208 research outputs found

    Asymptotic Performance Analysis of Large-Scale Active IRS-Aided Wireless Network

    Full text link
    In this paper, the dominant factor affecting the performance of active IRS-aided wireless communication networks in Rayleigh fading channel, namely the average signal-to-noise ratio (SNR) gamma0 at IRS, is defined and proposed. Making use of the weak law of large numbers, its simple asymptotic expression is derived as the number NN of IRS elements goes to medium-scale and large-scale. When N tends to large-scale, the asymptotic received SNR at user is proved to be a linear increasing function of a product of gamma0 and N. Subsequently, when the BS transmit power is fixed, there exists an optimal limited reflect power at IRS. At this point, more IRS reflect power will degrade the SNR performance. Additionally, under the total power sum constraint of the BS transmit power and the power reflected by the IRS, an optimal power allocation (PA) strategy is derived and shown to achieve 0.83 bit rate gain over equal PA. Finally, an IRS with finite phase shifters is taken into account, generates phase quantization errors, and further leads to a degradation of receive performance. The corresponding closed-form performance loss expressions for user's asymptotic SNR, achievable rate (AR), and bit error rate (BER) for active IRS and passive IRS are derived. Numerical simulations show that a 3-bit or 2-bit discrete phase shifter is required to achieve a trivial performance loss for a large-scale active and passive IRS, respectively

    IRS-assisted UAV Communications: A Comprehensive Review

    Full text link
    Intelligent reflecting surface (IRS) can smartly adjust the wavefronts in terms of phase, frequency, amplitude and polarization via passive reflections and without any need of radio frequency (RF) chains. It is envisaged as an emerging technology which can change wireless communication to improve both energy and spectrum efficiencies with low energy consumption and low cost. It can intelligently configure the wireless channels through a massive number of cost effective passive reflecting elements to improve the system performance. Similarly, unmanned aerial vehicle (UAV) communication has gained a viable attention due to flexible deployment, high mobility and ease of integration with several technologies. However, UAV communication is prone to security issues and obstructions in real-time applications. Recently, it is foreseen that UAV and IRS both can integrate together to attain unparalleled capabilities in difficult scenarios. Both technologies can ensure improved performance through proactively altering the wireless propagation using smart signal reflections and maneuver control in three dimensional (3D) space. IRS can be integrated in both aerial and terrene environments to reap the benefits of smart reflections. This study briefly discusses UAV communication, IRS and focuses on IRS-assisted UAC communications. It surveys the existing literature on this emerging research topic and highlights several promising technologies which can be implemented in IRS-assisted UAV communication. This study also presents several application scenarios and open research challenges. This study goes one step further to elaborate research opportunities to design and optimize wireless systems with low energy footprint and at low cost. Finally, we shed some light on future research aspects for IRS-assisted UAV communication

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    Joint Power Allocation and Beamforming for Active IRS-aided Directional Modulation Network

    Full text link
    To boost the secrecy rate (SR) of the conventional directional modulation (DM) network and overcome the double fading effect of the cascaded channels of passive intelligent reflecting surface (IRS), a novel active IRS-assisted DM system with a power adjusting strategy between transmitter and active IRS is proposed in this paper. Then, a joint optimization of maximizing the SR is cast by alternately optimizing the power allocation (PA) factors, transmit beamforming at the BS, and reflect beamforming at the active IRS, subject to the power constraint at IRS. To tackle the formulated non-convex optimization problem, a high-performance scheme of maximizing SR based on fractional programming (FP) and successive convex approximation (SCA) (Max-SR-FS) is proposed, where the FP and SCA methods are employed to optimize the PA factor of confidential message and the PA factor of power allocated to the BS, and the SCA algorithm is also utilized to design the transmit beamforming and phase shift matrix of the IRS. To reduce the high complexity, a low-complexity scheme, named maximizing SR based on derivative operation (DO) and general power iterative (GPI) (Max-SR-DG), is developed, where the DO and methods of the equal amplitude reflecting (EAR) and GPI are adopted to derive the PA factors and IRS phase shift matrix, respectively. Simulation results show that with the same power constraint, both the proposed schemes harvest about 12 percent and 70 percent rate gains over the equal PA and passive IRS schemes, respectively

    Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances

    Full text link
    Sixth-generation (6G) networks pose substantial security risks because confidential information is transmitted over wireless channels with a broadcast nature, and various attack vectors emerge. Physical layer security (PLS) exploits the dynamic characteristics of wireless environments to provide secure communications, while reconfigurable intelligent surfaces (RISs) can facilitate PLS by controlling wireless transmissions. With RIS-aided PLS, a lightweight security solution can be designed for low-end Internet of Things (IoT) devices, depending on the design scenario and communication objective. This article discusses RIS-aided PLS designs for 6G-IoT networks against eavesdropping and jamming attacks. The theoretical background and literature review of RIS-aided PLS are discussed, and design solutions related to resource allocation, beamforming, artificial noise, and cooperative communication are presented. We provide simulation results to show the effectiveness of RIS in terms of PLS. In addition, we examine the research issues and possible solutions for RIS modeling, channel modeling and estimation, optimization, and machine learning. Finally, we discuss recent advances, including STAR-RIS and malicious RIS.Comment: Accepted for IEEE Internet of Things Journa
    • …
    corecore