88 research outputs found

    Fundamentals of bidirectional transmission over a single optical fibre

    Get PDF

    Multi-Wavelength Fiber Lasers

    Get PDF

    Advanced fiber components for optical networks

    Get PDF
    Due to the tremendous growth in data traffic and the rapid development in optical transmission technologies, the limits of the transmission capacity available with the conventional erbium-doped amplifiers (EDFA), optical filters and modulation techniques have nearly been reached. The objective of this thesis is to introduce new fiber-optic components to optical networks to cope with the future growth in traffic and also to bring down the size and cost of the transmission equipment. Improvements in performance and in scalability of the optical networks are studied through simulations and experimental network set-ups. High-power single-mode laser sources operating at 980 nm are important in pumping EDFAs and Raman amplifiers. In this thesis, two new practical, fiber-coupled configurations of stable high-power cladding-pumped Yb-doped fiber sources operating at 977 nm are presented: a fiber laser and an ASE (amplified spontaneous emission) or superfluorescent source. Sources are based on high numerical aperture Yb-doped jacketed air-clad fiber and high brightness pump diodes. L-band EDFAs are used to expand amplification bandwidth beyond the C-band wavelengths. Traditional L-band EDFAs are costly devices, which are core-pumped with expensive high-power single-mode diodes. Cladding-pumping technology brings down the cost of the pump diodes in L-band EDFAs, since high-power but low-cost multimode pump diodes can then be used. Additionally, the flexibility in designing erbium-doped fiber is improved. In this thesis, a new design for L-band EDFA based on GTWave cladding-pumping technology is introduced. Simultaneous noise reduction and transient suppression in the amplifier is achieved by using a gain-clamping seed-signal. To increase the spectral efficiency of the optical transmission systems optical filters having square spectral response and linear phase, leading to zero dispersion both in-band and out-of-band, are required. The application of inverse scattering technique in conjunction with advanced fiber Bragg grating writing technique significantly reduces in-band dispersion and greatly improves grating characteristics. In this thesis, the in-band and out-of-band dispersion penalty of a cascade of linear-phase fiber Bragg grating (FBG) filters is experimentally measured and compared to the results with conventional apodized FBG filters. Fiber Bragg grating based distributed feedback fiber lasers (DFB FL) are attractive alternatives to semiconductor lasers. Output power and efficiency of DFB FLs can be significantly increased by using a master-oscillator-and-power-amplifier (MOPA) configuration, consequently degrading optical signal to noise ratio (OSNR) and RIN of the master source. These trade-offs are studied in several MOPA configurations using core-pumped and cladding-pumped EDFAs as power amplifiers and compared to the results with a high-power stand-alone DFB-FLs, i.e. DFB FLs pumped with a high-power pump source. Finally, the performance and scalability of a bidirectional and a high-density metropolitan WDM ring networks is analyzed. Results show that the scalability limitation imposed by the amplified RIN arising from the Rayleigh backscattering in bidirectional WDM ring networks can be avoided by using low gain shared-pump EDFAs and directly modulated transmitters. In high-density metropolitan WDM networks based on non-zero dispersion shifted fibers the main limiting nonlinearity is four-wave mixing. In metropolitan areas distributed Raman amplification (DRA) is the most effective means reduce the effect of four-wave mixing.reviewe

    Novel approaches to power scaling of single-frequency photonic crystal fiber amplifiers

    Get PDF
    This dissertation presents experimental and theoretical studies of high power, single-frequency, ytterbium-doped photonic crystal fiber amplifiers. The objective of this effort is to identify issues which limit power scaling and develop novel techniques to overcome these limitations. Historically, stimulated Brillouin scattering (SBS) has been the primary obstacle in the realization of high power single-frequency fiber amplifiers. A novel acoustically tailored photonic crystal fiber design, having a reduced Brillouin gain coefficient of 1.2x10-11 m/W, is demonstrated. The fiber design is such that it may be used in conjunction with other SBS mitigation techniques, which increases the nonlinear threshold beyond the current state of the art. In the successful suppression of SBS, a new regime of single-frequency photonic crystal fiber amplifier power scaling is explored. Instabilities in the transverse mode is observed at increasing output powers. Mitigation of this effect is demonstrated experimentally. This empirical data is used as the basis for a theoretical treatment of the problem, which provides direction for future fiber amplifier designs. The culmination of this work results in the successful utilization of the acoustically tailored photonic crystal fiber in a single-frequency counter-pumped amplifier configuration, yielding close to 500 W output power and near diffraction-limited beam quality

    A new concept short pulse fiber laser source

    Get PDF
    Ultrashort-pulse fiber laser systems, which offer, due to their high peak pulse intensity in combination with high pulse frequencies (repetition rate), an innovative technology of nonlinear interaction with materials, help to fabricate components with unprecedented quality, precision and speed. Also due to the short pulse duration, laser energy can be introduced into the material in a shorter time than heat transfer occurs, which thus prevents thermal damage to the part. It is not surprising that industrial laser systems with a sub-nanosecond pulse length are widely used in the markets of precision processing, medical devices and in many other applications. The most critical component of such systems is the seed laser source. To date, the existing devices in the commercial market do not fully satisfy the industrial requirements. In this thesis I describe a new concept for the generation of ultrashort laser pulses using an all-passive, fiber-ring, mode-locked laser with at least two passive spectral filters incorporated. Also presented is a full theoretical model of the operation of the laser. I report on the development and the comprehensive characterization of a fully optimized laser configuration, finding excellent agreement of the theoretical model and the experimental results. Various practical configurations and their application were demonstrated. During the period of the project, a fully commercially developed laser scheme was implemented in a variety of IPG Photonics picosecond and femtosecond laser systems.Open Acces

    WDM/TDM PON bidirectional networks single-fiber/wavelength RSOA-based ONUs layer 1/2 optimization

    Get PDF
    This Thesis proposes the design and the optimization of a hybrid WDM/TDM PON at the L1 (PHY) and L2 (MAC) layers, in terms of minimum deployment cost and enhanced performance for Greenfield NGPON. The particular case of RSOA-based ONUs and ODN using a single-fibre/single-wavelength is deeply analysed. In this WDM/TDM PON relevant parameters are optimized. Special attention has been given at the main noise impairment in this type of networks: the Rayleigh Backscattering effect, which cannot be prevented. To understand its behaviour and mitigate its effects, a novel mathematical model for the Rayleigh Backscattering in burst mode transmission is presented for the first time, and it has been used to optimize the WDM/TDM RSOA based PON. Also, a cost-effective, simple design SCM WDM/TDM PON with rSOA-based ONU, was optimized and implemented. This prototype was successfully tested showing high performance, robustness, versatility and reliability. So, the system is able to give coverage up to 1280 users at 2.5 Gb/s / 1.25 Gb/s downstream/upstream, over 20 Km, and being compatible with the GPON ITU-T recommendation. This precedent has enabled the SARDANA network to extend the design, architecture and capabilities of a WDM/TDM PON for a long reach metro-access network (100 km). A proposal for an agile Transmission Convergence sub-layer is presented as another relevant contribution of this work. It is based on the optimization of the standards GPON and XG-PON (for compatibility), but applied to a long reach metro-access TDM/WDM PON rSOA-based network with higher client count. Finally, a proposal of physical implementation for the SARDANA layer 2 and possible configurations for SARDANA internetworking, with the metro network and core transport network, are presented

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators
    corecore