8,203 research outputs found

    Optimal Policies for Status Update Generation in a Wireless System with Heterogeneous Traffic

    Full text link
    A large body of applications that involve monitoring, decision making, and forecasting require timely status updates for their efficient operation. Age of Information (AoI) is a newly proposed metric that effectively captures this requirement. Recent research on the subject has derived AoI optimal policies for the generation of status updates and AoI optimal packet queueing disciplines. Unlike previous research we focus on low-end devices that typically support monitoring applications in the context of the Internet of Things. We acknowledge that these devices host a diverse set of applications some of which are AoI sensitive while others are not. Furthermore, due to their limited computational resources they typically utilize a simple First-In First-Out (FIFO) queueing discipline. We consider the problem of optimally controlling the status update generation process for a system with a source-destination pair that communicates via a wireless link, whereby the source node is comprised of a FIFO queue and two applications, one that is AoI sensitive and one that is not. We formulate this problem as a dynamic programming problem and utilize the framework of Markov Decision Processes to derive optimal policies for the generation of status update packets. Due to the lack of comparable methods in the literature, we compare the derived optimal policies against baseline policies, such as the zero-wait policy, and investigate the performance of all policies for a variety of network configurations. Results indicate that existing status update policies fail to capture the trade-off between frequent generation of status updates and queueing delay and thus perform poorly

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network
    • …
    corecore