273 research outputs found

    Honeypot Allocation for Cyber Deception in Dynamic Tactical Networks: A Game Theoretic Approach

    Full text link
    Honeypots play a crucial role in implementing various cyber deception techniques as they possess the capability to divert attackers away from valuable assets. Careful strategic placement of honeypots in networks should consider not only network aspects but also attackers' preferences. The allocation of honeypots in tactical networks under network mobility is of great interest. To achieve this objective, we present a game-theoretic approach that generates optimal honeypot allocation strategies within an attack/defense scenario. Our proposed approach takes into consideration the changes in network connectivity. In particular, we introduce a two-player dynamic game model that explicitly incorporates the future state evolution resulting from changes in network connectivity. The defender's objective is twofold: to maximize the likelihood of the attacker hitting a honeypot and to minimize the cost associated with deception and reconfiguration due to changes in network topology. We present an iterative algorithm to find Nash equilibrium strategies and analyze the scalability of the algorithm. Finally, we validate our approach and present numerical results based on simulations, demonstrating that our game model successfully enhances network security. Additionally, we have proposed additional enhancements to improve the scalability of the proposed approach.Comment: This paper accepted in 14th International Conference on Decision and Game Theory for Security, GameSec 202

    Three Decades of Deception Techniques in Active Cyber Defense -- Retrospect and Outlook

    Full text link
    Deception techniques have been widely seen as a game changer in cyber defense. In this paper, we review representative techniques in honeypots, honeytokens, and moving target defense, spanning from the late 1980s to the year 2021. Techniques from these three domains complement with each other and may be leveraged to build a holistic deception based defense. However, to the best of our knowledge, there has not been a work that provides a systematic retrospect of these three domains all together and investigates their integrated usage for orchestrated deceptions. Our paper aims to fill this gap. By utilizing a tailored cyber kill chain model which can reflect the current threat landscape and a four-layer deception stack, a two-dimensional taxonomy is developed, based on which the deception techniques are classified. The taxonomy literally answers which phases of a cyber attack campaign the techniques can disrupt and which layers of the deception stack they belong to. Cyber defenders may use the taxonomy as a reference to design an organized and comprehensive deception plan, or to prioritize deception efforts for a budget conscious solution. We also discuss two important points for achieving active and resilient cyber defense, namely deception in depth and deception lifecycle, where several notable proposals are illustrated. Finally, some outlooks on future research directions are presented, including dynamic integration of different deception techniques, quantified deception effects and deception operation cost, hardware-supported deception techniques, as well as techniques developed based on better understanding of the human element.Comment: 19 page

    Design of Dynamic and Personalized Deception: A Research Framework and New Insights

    Get PDF
    Deceptive defense techniques (e.g., intrusion detection, firewalls, honeypots, honeynets) are commonly used to prevent cyberattacks. However, most current defense techniques are generic and static, and are often learned and exploited by attackers. It is important to advance from static to dynamic forms of defense that can actively adapt a defense strategy according to the actions taken by individual attackers during an active attack. Our novel research approach relies on cognitive models and experimental games: Cognitive models aim at replicating an attacker’s behavior allowing the creation of personalized, dynamic deceptive defense strategies; experimental games help study human actions, calibrate cognitive models, and validate deceptive strategies. In this paper we offer the following contributions: (i) a general research framework for the design of dynamic, adaptive and personalized deception strategies for cyberdefense; (ii) a summary of major insights from experiments and cognitive models developed for security games of increased complexity; and (iii) a taxonomy of potential deception strategies derived from our research program so far

    A Survey of Network Requirements for Enabling Effective Cyber Deception

    Full text link
    In the evolving landscape of cybersecurity, the utilization of cyber deception has gained prominence as a proactive defense strategy against sophisticated attacks. This paper presents a comprehensive survey that investigates the crucial network requirements essential for the successful implementation of effective cyber deception techniques. With a focus on diverse network architectures and topologies, we delve into the intricate relationship between network characteristics and the deployment of deception mechanisms. This survey provides an in-depth analysis of prevailing cyber deception frameworks, highlighting their strengths and limitations in meeting the requirements for optimal efficacy. By synthesizing insights from both theoretical and practical perspectives, we contribute to a comprehensive understanding of the network prerequisites crucial for enabling robust and adaptable cyber deception strategies

    DECEPTION BASED TECHNIQUES AGAINST RANSOMWARES: A SYSTEMATIC REVIEW

    Get PDF
    Ransomware is the most prevalent emerging business risk nowadays. It seriously affects business continuity and operations. According to Deloitte Cyber Security Landscape 2022, up to 4000 ransomware attacks occur daily, while the average number of days an organization takes to identify a breach is 191. Sophisticated cyber-attacks such as ransomware typically must go through multiple consecutive phases (initial foothold, network propagation, and action on objectives) before accomplishing its final objective. This study analyzed decoy-based solutions as an approach (detection, prevention, or mitigation) to overcome ransomware. A systematic literature review was conducted, in which the result has shown that deception-based techniques have given effective and significant performance against ransomware with minimal resources. It is also identified that contrary to general belief, deception techniques mainly involved in passive approaches (i.e., prevention, detection) possess other active capabilities such as ransomware traceback and obstruction (thwarting), file decryption, and decryption key recovery. Based on the literature review, several evaluation methods are also analyzed to measure the effectiveness of these deception-based techniques during the implementation process

    Game of Travesty: Decoy-based Psychological Cyber Deception for Proactive Human Agents

    Full text link
    The concept of cyber deception has been receiving emerging attention. The development of cyber defensive deception techniques requires interdisciplinary work, among which cognitive science plays an important role. In this work, we adopt a signaling game framework between a defender and a human agent to develop a cyber defensive deception protocol that takes advantage of the cognitive biases of human decision-making using quantum decision theory to combat insider attacks (IA). The defender deceives an inside human attacker by luring him to access decoy sensors via generators producing perceptions of classical signals to manipulate the human attacker's psychological state of mind. Our results reveal that even without changing the classical traffic data, strategically designed generators can result in a worse performance for defending against insider attackers in identifying decoys than the ones in the deceptive scheme without generators, which generate random information based on input signals. The proposed framework leads to fundamental theories in designing more effective signaling schemes

    Collaborative Honeypot Defense in UAV Networks: A Learning-Based Game Approach

    Full text link
    The proliferation of unmanned aerial vehicles (UAVs) opens up new opportunities for on-demand service provisioning anywhere and anytime, but also exposes UAVs to a variety of cyber threats. Low/medium interaction honeypots offer a promising lightweight defense for actively protecting mobile Internet of things, particularly UAV networks. While previous research has primarily focused on honeypot system design and attack pattern recognition, the incentive issue for motivating UAV's participation (e.g., sharing trapped attack data in honeypots) to collaboratively resist distributed and sophisticated attacks remains unexplored. This paper proposes a novel game-theoretical collaborative defense approach to address optimal, fair, and feasible incentive design, in the presence of network dynamics and UAVs' multi-dimensional private information (e.g., valid defense data (VDD) volume, communication delay, and UAV cost). Specifically, we first develop a honeypot game between UAVs and the network operator under both partial and complete information asymmetry scenarios. The optimal VDD-reward contract design problem with partial information asymmetry is then solved using a contract-theoretic approach that ensures budget feasibility, truthfulness, fairness, and computational efficiency. In addition, under complete information asymmetry, we devise a distributed reinforcement learning algorithm to dynamically design optimal contracts for distinct types of UAVs in the time-varying UAV network. Extensive simulations demonstrate that the proposed scheme can motivate UAV's cooperation in VDD sharing and improve defensive effectiveness, compared with conventional schemes.Comment: Accepted Aug. 28, 2023 by IEEE Transactions on Information Forensics & Security. arXiv admin note: text overlap with arXiv:2209.1381
    corecore