43 research outputs found

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    Naming and discovery in networks : architecture and economics

    Get PDF
    In less than three decades, the Internet was transformed from a research network available to the academic community into an international communication infrastructure. Despite its tremendous success, there is a growing consensus in the research community that the Internet has architectural limitations that need to be addressed in a effort to design a future Internet. Among the main technical limitations are the lack of mobility support, and the lack of security and trust. The Internet, and particularly TCP/IP, identifies endpoints using a location/routing identifier, the IP address. Coupling the endpoint identifier to the location identifier hinders mobility and poorly identifies the actual endpoint. On the other hand, the lack of security has been attributed to limitations in both the network and the endpoint. Authentication for example is one of the main concerns in the architecture and is hard to implement partly due to lack of identity support. The general problem that this dissertation is concerned with is that of designing a future Internet. Towards this end, we focus on two specific sub-problems. The first problem is the lack of a framework for thinking about architectures and their design implications. It was obvious after surveying the literature that the majority of the architectural work remains idiosyncratic and descriptions of network architectures are mostly idiomatic. This has led to the overloading of architectural terms, and to the emergence of a large body of network architecture proposals with no clear understanding of their cross similarities, compatibility points, their unique properties, and architectural performance and soundness. On the other hand, the second problem concerns the limitations of traditional naming and discovery schemes in terms of service differentiation and economic incentives. One of the recurring themes in the community is the need to separate an entity\u27s identifier from its locator to enhance mobility and security. Separation of identifier and locator is a widely accepted design principle for a future Internet. Separation however requires a process to translate from the identifier to the locator when discovering a network path to some identified entity. We refer to this process as identifier-based discovery, or simply discovery, and we recognize two limitations that are inherent in the design of traditional discovery schemes. The first limitation is the homogeneity of the service where all entities are assumed to have the same discovery performance requirements. The second limitation is the inherent incentive mismatch as it relates to sharing the cost of discovery. This dissertation addresses both subproblems, the architectural framework as well as the naming and discovery limitations

    Collaboration Enforcement In Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc NETworks (MANETs) have attracted great research interest in recent years. Among many issues, lack of motivation for participating nodes to collaborate forms a major obstacle to the adoption of MANETs. Many contemporary collaboration enforcement techniques employ reputation mechanisms for nodes to avoid and penalize malicious participants. Reputation information is propagated among participants and updated based on complicated trust relationships to thwart false accusation of benign nodes. The aforementioned strategy suffers from low scalability and is likely to be exploited by adversaries. To address these problems, we first propose a finite state model. With this technique, no reputation information is propagated in the network and malicious nodes cannot cause false penalty to benign hosts. Misbehaving node detection is performed on-demand; and malicious node punishment and avoidance are accomplished by only maintaining reputation information within neighboring nodes. This scheme, however, requires that each node equip with a tamper-proof hardware. In the second technique, no such restriction applies. Participating nodes classify their one-hop neighbors through direct observation and misbehaving nodes are penalized within their localities. Data packets are dynamically rerouted to circumvent selfish nodes. In both schemes, overall network performance is greatly enhanced. Our approach significantly simplifies the collaboration enforcement process, incurs low overhead, and is robust against various malicious behaviors. Simulation results based on different system configurations indicate that the proposed technique can significantly improve network performance with very low communication cost

    MARIAN: A hybrid, metric-driven, agent-based routing protocol for multihop ad-hoc networks

    Get PDF
    Recent advances in technology provided the ground for highly dynamic, mobile, infrastructure-less networks, namely, ad-hoc networks. Despite their enormous benefits, the full potential cannot be reached unless certain issues are resolved. These mainly involve routing, as the lack of an infrastructure imposes a heavy burden on mobile devices that must maintain location information and route data packets in a multi-hop fashion. Specifically, typical adhoc routing devices, such as Personal Digital Assistants (PDAs), are limited in respect to the available throughput, life-time, and performance, that these may provide, as routing elements. Thus, there is a need for metric-driven ad-hoc routing, that is, devices should be utilised for routing according to their fitness, as different device types significantly vary in terms of routing fitness. In addition, a concrete agent-based approach can provide a set of advantages over a non-agent-based one, which includes: better design practice; and automatic reconfigurability.This research work aims to investigate the applicability of stationary and mobile agent technology in multi-hop ad-hoc routing. Specifically, this research proposes a novel hybrid, metric-driven, agent-based routing protocol for multi-hop ad-hoc networks that will enhance current routing schemes. The novelties that are expected to be achieved include: maximum network performance, increased scalability, dynamic adaptation, Quality of Service (QoS), energy conservation, reconfigurability, and security. The underlying idea is based on the fact that stationary and mobile agents can be ideal candidates for such dynamic environments due to their advanced characteristics, and thus offer state of the art support in terms of organising the otherwise disoriented network into an efficient and flexible hierarchical structure, classifying the routing fitness of participating devices, and therefore allow intelligent routing decisions to be taken on that basis

    MARIAN: A hybrid, metric-driven, agent-based routing protocol for multihop ad-hoc networks

    Get PDF
    Recent advances in technology provided the ground for highly dynamic, mobile, infrastructure-less networks, namely, ad-hoc networks. Despite their enormous benefits, the full potential cannot be reached unless certain issues are resolved. These mainly involve routing, as the lack of an infrastructure imposes a heavy burden on mobile devices that must maintain location information and route data packets in a multi-hop fashion. Specifically, typical adhoc routing devices, such as Personal Digital Assistants (PDAs), are limited in respect to the available throughput, life-time, and performance, that these may provide, as routing elements. Thus, there is a need for metric-driven ad-hoc routing, that is, devices should be utilised for routing according to their fitness, as different device types significantly vary in terms of routing fitness. In addition, a concrete agent-based approach can provide a set of advantages over a non-agent-based one, which includes: better design practice; and automatic reconfigurability.This research work aims to investigate the applicability of stationary and mobile agent technology in multi-hop ad-hoc routing. Specifically, this research proposes a novel hybrid, metric-driven, agent-based routing protocol for multi-hop ad-hoc networks that will enhance current routing schemes. The novelties that are expected to be achieved include: maximum network performance, increased scalability, dynamic adaptation, Quality of Service (QoS), energy conservation, reconfigurability, and security. The underlying idea is based on the fact that stationary and mobile agents can be ideal candidates for such dynamic environments due to their advanced characteristics, and thus offer state of the art support in terms of organising the otherwise disoriented network into an efficient and flexible hierarchical structure, classifying the routing fitness of participating devices, and therefore allow intelligent routing decisions to be taken on that basis

    Channel assignment and routing in cooperative and competitive wireless mesh networks

    Get PDF
    In this thesis, the channel assignment and routing problems have been investigated for both cooperative and competitive Wireless Mesh networks (WMNs). A dynamic and distributed channel assignment scheme has been proposed which generates the network topologies ensuring less interference and better connectivity. The proposed channel assignment scheme is capable of detecting the node failures and mobility in an efficient manner. The channel monitoring module precisely records the quality of bi-directional links in terms of link delays. In addition, a Quality of Service based Multi-Radio Ad-hoc On Demand Distance Vector (QMR-AODV) routing protocol has been devised. QMR-AODV is multi-radio compatible and provides delay guarantees on end-to-end paths. The inherited problem of AODV’s network wide flooding has been solved by selectively forwarding the routing queries on specified interfaces. The QoS based delay routing metric, combined with the selective route request forwarding, reduces the routing overhead from 24% up to 36% and produces 40.4% to 55.89% less network delays for traffic profiles of 10 to 60 flows, respectively. A distributed channel assignment scheme has been proposed for competitive WMNs, where the problem has been investigated by applying the concepts from non-cooperative bargaining Game Theory in two stages. In the first stage of the game, individual nodes of the non-cooperative setup is considered as the unit of analysis, where sufficient and necessary conditions for the existence of Nash Equilibrium (NE) and Negotiation-Proof Nash Equilibrium (N-PNE) have been derived. A distributed algorithm has been presented with perfect information available to the nodes of the network. In the presence of perfect information, each node has the knowledge of interference experience by the channels in its collision domain. The game converges to N-PNE in finite time and the average fairness achieved by all the nodes is greater than 0.79 (79%) as measured through Jain Fairness Index. Since N-PNE and NE are not always a system optimal solutions when considered from the end-nodes prospective, the model is further extended to incorporate non-cooperative end-users bargaining between two end user’s Mesh Access Points (MAPs), where an increase of 10% to 27% in end-to-end throughput is achieved. Furthermore, a non-cooperative game theoretical model is proposed for end-users flow routing in a multi-radio multi-channel WMNs. The end user nodes are selfish and compete for the channel resources across the WMNs backbone, aiming to maximize their own benefit without taking care for the overall system optimization. The end-to-end throughputs achieved by the flows of an end node and interference experienced across the WMNs backbone are considered as the performance parameters in the utility function. Theoretical foundation has been drawn based on the concepts from the Game Theory and necessary conditions for the existence of NE have been extensively derived. A distributed algorithm running on each end node with imperfect information has been implemented to assess the usefulness of the proposed mechanism. The analytical results have proven that a pure strategy Nash Equilibrium exists with the proposed necessary conditions in a game of imperfect information. Based on a distributed algorithm, the game converges to a stable state in finite time. The proposed game theoretical model provides a more reasonable solution with a standard deviation of 2.19Mbps as compared to 3.74Mbps of the random flow routing. Finally, the Price of Anarchy (PoA) of the system is close to one which shows the efficiency of the proposed scheme.EThOS - Electronic Theses Online ServiceHigher Education Commission of PakistanUniversity of Engineering and Technology, PeshawarGBUnited Kingdo

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Application of knowledge based engineering principles to intelligent automation systems

    Get PDF
    The automation of engineering processes provides many benefits over manual methods including significant cost and scheduling reduction as well as intangible advantages of greater consistency based on agreed methods, standardisation and simplification of complex problems and knowledge retention. Knowledge Based Engineering (KBE) and Design Automation (DA) are two sets of methodologies and technologies for automating engineering processes through software. KBE refers to the structured capture, modelling and deployment of engineering knowledge in high level intelligent systems that provide a wide scope of automation capability. KBE system development is supported by numerous mature methodologies that cover all aspects of the development process including: problem identification and feasibility studies, knowledge capture and modelling, and system design, development and deployment. Conversely, DA is the process of developing automated solutions to specific, well defined engineering tasks. The DA approach is characterised by agile software development methods, producing lower level systems that are intentionally limited in scope. DA-type solutions are more commonly adopted by industry than KBE applications due to shorter development schedules, lower cost and less complex development processes. However, DA application development is not as well supported by theoretical frameworks, and consequently, development processes can be unstructured and best practices not observed. The research presented in this thesis is divided into two key areas. Firstly, a methodology for automating engineering processes is proposed, with the aim of improving the accessibility of mature KBE methods to a broader industrial base. This methodology supports development of automation applications ranging in complexity from high level KBE systems to lower level DA applications. A complexity editing mechanism is introduced that relates detailed processes of KBE methodologies to a set of characteristics that can be exhibited by automated solutions. Depending on individual application requirements, complexity of automated solutions can lowered by deselecting one or more of these characteristics, omitting associated high-level processes from the development methodology. At the lowest level of complexity, the methodology provides a structured process for producing DA applications that incorporates principles of mature KBE methodologies. The second part of this research uses the proposed automation methodology to develop a system to automate the layout design of aircraft electrical harnesses. Increasing complexity of aircraft electrical systems has an associated increase in the number and size of electrical harnesses required to connect subsystems throughout the airframe. Current practices for layout design are highly manual, with many governing rules and best practices. The automation of this process will provide a significant reduction in low level, repetitive, manual work. The resulting automated routing tool implements path-finding techniques from computer game artificial intelligence and microprocessor design domains, together with new methods for incorporating the numerous design rules governing harness placement. The system was tested with a complex industrial test case, and was found to provide harness solutions in a fraction of the time and with comparable quality as equivalent manual design processes. The repeatability of the automated process can also minimise scheduling impacts caused by late design changes

    Towards a cloud enabler : from an optical network resource provisioning system to a generalized architecture for dynamic infrastructure services provisioning

    Get PDF
    This work was developed during a period where most of the optical management and provisioning system where manual and proprietary. This work contributed to the evolution of the state of the art of optical networks with new architectures and advanced virtual infrastructure services. The evolution of optical networks, and internet globally, have been very promising during the last decade. The impact of mobile technology, grid, cloud computing, HDTV, augmented reality and big data, among many others, have driven the evolution of optical networks towards current service technologies, mostly based on SDN (Software Defined Networking) architectures and NFV(Network Functions Virtualisation). Moreover, the convergence of IP/Optical networks and IT services, and the evolution of the internet and optical infrastructures, have generated novel service orchestrators and open source frameworks. In fact, technology has evolved that fast that none could foresee how important Internet is for our current lives. Said in other words, technology was forced to evolve in a way that network architectures became much more transparent, dynamic and flexible to the end users (applications, user interfaces or simple APIs). This Thesis exposes the work done on defining new architectures for Service Oriented Networks and the contribution to the state of the art. The research work is divided into three topics. It describes the evolution from a Network Resource Provisioning System to an advanced Service Plane, and ends with a new architecture that virtualized the optical infrastructure in order to provide coordinated, on-demand and dynamic services between the application and the network infrastructure layer, becoming an enabler for the new generation of cloud network infrastructures. The work done on defining a Network Resource Provisioning System established the first bases for future work on network infrastructure virtualization. The UCLP (User Light Path Provisioning) technology was the first attempt for Customer Empowered Networks and Articulated Private Networks. It empowered the users and brought virtualization and partitioning functionalities into the optical data plane, with new interfaces for dynamic service provisioning. The work done within the development of a new Service Plane allowed the provisioning of on-demand connectivity services from the application, and in a multi-domain and multi-technology scenario based on a virtual network infrastructure composed of resources from different infrastructure providers. This Service Plane facilitated the deployment of applications consuming large amounts of data under deterministic conditions, so allowing the networks behave as a Grid-class resource. It became the first on-demand provisioning system that at lower levels allowed the creation of one virtual domain composed from resources of different providers. The last research topic presents an architecture that consolidated the work done in virtualisation while enhancing the capabilities to upper layers, so fully integrating the optical network infrastructure into the cloud environment, and so providing an architecture that enabled cloud services by integrating the request of optical network and IT infrastructure services together at the same level. It set up a new trend into the research community and evolved towards the technology we use today based on SDN and NFV. Summing up, the work presented is focused on the provisioning of virtual infrastructures from the architectural point of view of optical networks and IT infrastructures, together with the design and definition of novel service layers. It means, architectures that enabled the creation of virtual infrastructures composed of optical networks and IT resources, isolated and provisioned on-demand and in advance with infrastructure re-planning functionalities, and a new set of interfaces to open up those services to applications or third parties.Aquesta tesi es va desenvolupar durant un període on la majoria de sistemes de gestió de xarxa òptica eren manuals i basats en sistemes propietaris. En aquest sentit, la feina presentada va contribuir a l'evolució de l'estat de l'art de les xarxes òptiques tant a nivell d’arquitectures com de provisió d’infraestructures virtuals. L'evolució de les xarxes òptiques, i d'Internet a nivell mundial, han estat molt prometedores durant l'última dècada. L'impacte de la tecnologia mòbil, la computació al núvol, la televisió d'alta definició, la realitat augmentada i el big data, entre molts altres, han impulsat l'evolució cap a xarxes d’altes prestacions amb nous serveis basats en SDN (Software Defined Networking) i NFV (Funcions de xarxa La virtualització). D'altra banda, la convergència de xarxes òptiques i els serveis IT, junt amb l'evolució d'Internet i de les infraestructures òptiques, han generat nous orquestradors de serveis i frameworks basats en codi obert. La tecnologia ha evolucionat a una velocitat on ningú podria haver predit la importància que Internet està tenint en el nostre dia a dia. Dit en altres paraules, la tecnologia es va veure obligada a evolucionar d'una manera on les arquitectures de xarxa es fessin més transparent, dinàmiques i flexibles vers als usuaris finals (aplicacions, interfícies d'usuari o APIs simples). Aquesta Tesi presenta noves arquitectures de xarxa òptica orientades a serveis. El treball de recerca es divideix en tres temes. Es presenta un sistema de virtualització i aprovisionament de recursos de xarxa i la seva evolució a un pla de servei avançat, per acabar presentant el disseny d’una nova arquitectura capaç de virtualitzar la infraestructura òptica i IT i proporcionar serveis de forma coordinada, i sota demanda, entre l'aplicació i la capa d'infraestructura de xarxa òptica. Tot esdevenint un facilitador per a la nova generació d'infraestructures de xarxa en el núvol. El treball realitzat en la definició del sistema de virtualització de recursos va establir les primeres bases sobre la virtualització de la infraestructura de xarxa òptica en el marc de les “Customer Empowered Networks” i “Articulated Private Networks”. Amb l’objectiu de virtualitzar el pla de dades òptic, i oferir noves interfícies per a la provisió de serveis dinàmics de xarxa. En quant al pla de serveis presentat, aquest va facilitat la provisió de serveis de connectivitat sota demanda per part de l'aplicació, tant en entorns multi-domini, com en entorns amb múltiples tecnologies. Aquest pla de servei, anomenat Harmony, va facilitar el desplegament de noves aplicacions que consumien grans quantitats de dades en condicions deterministes. En aquest sentit, va permetre que les xarxes es comportessin com un recurs Grid, i per tant, va esdevenir el primer sistema d'aprovisionament sota demanda que permetia la creació de dominis virtuals de xarxa composts a partir de recursos de diferents proveïdors. Finalment, es presenta l’evolució d’un pla de servei cap una arquitectura global que consolida el treball realitzat a nivell de convergència d’infraestructures (òptica + IT) i millora les capacitats de les capes superiors. Aquesta arquitectura va facilitar la plena integració de la infraestructura de xarxa òptica a l'entorn del núvol. En aquest sentit, aquest resultats van evolucionar cap a les tendències actuals de SDN i NFV. En resum, el treball presentat es centra en la provisió d'infraestructures virtuals des del punt de vista d’arquitectures de xarxa òptiques i les infraestructures IT, juntament amb el disseny i definició de nous serveis de xarxa avançats, tal i com ho va ser el servei de re-planificació dinàmicaPostprint (published version
    corecore