1,073 research outputs found

    Optimal RoadSide Units Distribution Approach in Vehicular Ad hoc Network

    Get PDF
    A vehicular ad hoc network is a particular type of ad hoc mobile network. It is characterized by high mobility and frequent disconnection between vehicles. For this, the roadside units (RSUs) deployment permits to enhance the network connectivity. The objective of this work is to provide an optimized RSUs placement for enhancing the network connectivity and maximizing the accident coverage with reducing the deployment cost. In this paper, we propose our approach called Optimized RoadSide units Deployment (ORSD). The proposed approach comprises a two-step, in the first step, ORSD finds the RSUs candidate locations based on network density and connectivity. We calculated the connectivity of each segment based on speed and arrival information’s.  The second step permit to find the optimal solution of our proposed objective function. The objective function permits to enhance the network connectivity and maximizing the accident coverage.  To find the optimal solution of our objective function is an NP-complete problem of order o(n²) .  Therefore, we propose to solve this problem in two phases, so that it becomes a simple linear problem to solve. The ORSD is proposed for urban and high way scenarios. The extensive simulation study is conducted in order to assess the effectiveness of the proposed approach. We use the Simulator of Urban MObility (SUMO) for generating different traffic scenarios. We develop scripts to extract different information as density, speed and travel time in each segment. Then, we develop an algorithm to calculate connectivity probability for each segment. Then, we implement our objective function to finds optimal RSUs positions in terms of connectivity, accident cover and cost

    Optimal Content Downloading in Vehicular Networks

    Get PDF
    We consider a system where users aboard communication-enabled vehicles are interested in downloading different contents from Internet-based servers. This scenario captures many of the infotainment services that vehicular communication is envisioned to enable, including news reporting, navigation maps and software updating, or multimedia file downloading. In this paper, we outline the performance limits of such a vehicular content downloading system by modelling the downloading process as an optimization problem, and maximizing the overall system throughput. Our approach allows us to investigate the impact of different factors, such as the roadside infrastructure deployment, the vehicle-to-vehicle relaying, and the penetration rate of the communication technology, even in presence of large instances of the problem. Results highlight the existence of two operational regimes at different penetration rates and the importance of an efficient, yet 2-hop constrained, vehicle-to-vehicle relaying

    Vehicular Networks with Infrastructure: Modeling, Simulation and Testbed

    Get PDF
    This thesis focuses on Vehicular Networks with Infrastructure. In the examined scenarios, vehicular nodes (e.g., cars, buses) can communicate with infrastructure roadside units (RSUs) providing continuous or intermittent coverage of an urban road topology. Different aspects related to the design of new applications for Vehicular Networks are investigated through modeling, simulation and testing on real field. In particular, the thesis: i) provides a feasible multi-hop routing solution for maintaining connectivity among RSUs, forming the wireless mesh infrastructure, and moving vehicles; ii) explains how to combine the UHF and the traditional 5-GHz bands to design and implement a new high-capacity high-efficiency Content Downloading using disjoint control and service channels; iii) studies new RSUs deployment strategies for Content Dissemination and Downloading in urban and suburban scenarios with different vehicles mobility models and traffic densities; iv) defines an optimization problem to minimize the average travel delay perceived by the drivers, spreading different traffic flows over the surface roads in a urban scenario; v) exploits the concept of Nash equilibrium in the game-theory approach to efficiently guide electric vehicles drivers' towards the charging stations. Moreover, the thesis emphasizes the importance of using realistic mobility models, as well as reasonable signal propagation models for vehicular networks. Simplistic assumptions drive to trivial mathematical analysis and shorter simulations, but they frequently produce misleading results. Thus, testing the proposed solutions in the real field and collecting measurements is a good way to double-check the correctness of our studie

    A Real-time Energy-Saving Mechanism in Internet of Vehicles Systems

    Get PDF
    Emerging technologies, such as self-driving cars and 5G communications, are raising new mobility and transportation possibilities in smart and sustainable cities, bringing to a new echo-system often referred to as Internet of Vehicles (IoV). In order to efficiently operate, an IoV system should take into account more stringent requirements with respect to traditional IoT systems, e.g., ultra-broadband connections, high-speed mobility, high-energy efficiency and requires efficient real-time algorithms. This paper proposes an energy and communication driven model for IoV scenarios, where roadside units (RSUs) need to be frequently assigned and re-assigned to the operating vehicles. The problem has been formulated as an Uncapacitated Facility Location Problem (UFLP) for jointly solving the RSU-to-vehicle allocation problem while managing the RSUs switch-on and -off processes. Differently from traditional UFLP approaches, based on static solutions, we propose here a fast-heuristic approach, based on a dynamic multi-period time scale mapping: the proposed algorithm is able to efficiently manage in real-time the RSUs, selecting at each period those to be activated and those to be switched off. The resulting methodology is tested against a set of benchmark instances, which allows us to illustrate its potential. Results, in terms of overall cost –mapping both energy consumption and transmission delays–, number of active RSUs, and convergence speed, are compared with static approaches, showing the effectiveness of the proposed dynamic solution. It is noticeable a gain of up to 11% in terms of overall cost with respect to the static approaches, with a moderate additional delay for finding the solution, around 0.8 s, while the overall number of RSUs to be switched on is sensibly reduced up to a fraction of 15% of the overall number of deployed RSUs, in the most convenient scenario

    A Real-Time Energy-Saving Mechanism in Internet of Vehicles Systems

    Full text link
    [EN] Emerging technologies, such as self-driving cars and 5G communications, are raising new mobility and transportation possibilities in smart and sustainable cities, bringing to a new echo-system often referred to as Internet of Vehicles (IoV). In order to efficiently operate, an IoV system should take into account more stringent requirements with respect to traditional IoT systems, e.g., ultra-broadband connections, high-speed mobility, high-energy efficiency and requires efficient real-time algorithms. This paper proposes an energy and communication driven model for IoV scenarios, where roadside units (RSUs) need to be frequently assigned and re-assigned to the operating vehicles. The problem has been formulated as an Uncapacitated Facility Location Problem (UFLP) for jointly solving the RSU-to-vehicle allocation problem while managing the RSUs switch-on and -off processes. Differently from traditional UFLP approaches, based on static solutions, we propose here a fast-heuristic approach, based on a dynamic multi-period time scale mapping: the proposed algorithm is able to efficiently manage in real-time the RSUs, selecting at each period those to be activated and those to be switched off. The resulting methodology is tested against a set of benchmark instances, which allows us to illustrate its potential. Results, in terms of overall cost-mapping both energy consumption and transmission delays-, number of active RSUs, and convergence speed, are compared with static approaches, showing the effectiveness of the proposed dynamic solution. It is noticeable a gain of up to 11% in terms of overall cost with respect to the static approaches, with a moderate additional delay for finding the solution, around 0.8 s, while the overall number of RSUs to be switched on is sensibly reduced up to a fraction of 15% of the overall number of deployed RSUs, in the most convenient scenario.The work of Luca Cesarano and Andrea Croce has been done during an abroad study period at Universitat Oberta de Catalunya, Spain, supported by Erasmus+ Study Programme of the European Union.Cesarano, L.; Croce, A.; Martins, LDC.; Tarchi, D.; Juan-Pérez, ÁA. (2021). A Real-Time Energy-Saving Mechanism in Internet of Vehicles Systems. IEEE Access. 9:157842-157858. https://doi.org/10.1109/ACCESS.2021.3130125157842157858

    A Data Fusion Approach to Automated Decision Making in Intelligent Vehicles

    Get PDF
    The goal of an intelligent transportation system is to increase safety, convenience and efficiency in driving. Besides these obvious advantages, the integration of intelligent features and autonomous functionalities on vehicles will lead to major economic benefits from reduced fuel consumption to efficient exploitation of the road network. While giving this information to the driver can be useful, there is also the possibility of overloading the driver with too much information. Existing vehicles already have some mechanisms to take certain actions if the driver fails to act. Future vehicles will need more complex decision making modules which receive the raw data from all available sources, process this data and inform the driver about the existing or impending situations and suggest, or even take actions. Intelligent vehicles can take advantage of using different sources of data to provide more reliable and more accurate information about driving situations and build a safer driving environment. I have identified five general sources of data which is available for intelligent vehicles: the vehicle itself, cameras on the vehicle, communication between the vehicle and other vehicles, communications between vehicles and roadside units and the driver information. But facing this huge amount of data requires a decision making module to collect this data and provide the best reaction based on the situation. In this thesis, I present a data fusion approach for decision making in vehicles in which a decision making module collects data from the available sources of information and analyses this data and provides the driver with helpful information such as traffic congestion, emergency messages, etc. The proposed approach uses agents to collect the data and the agents cooperate using a black board method to provide the necessary data for the decision making system. The Decision making system benefits from this data and provides the intelligent vehicle applications with the best action(s) to be taken. Overall, the results show that using this data fusion approach for making decision in vehicles shows great potential for improving performance of vehicular systems by reducing travel time and wait time and providing more accurate information about the surrounding environment for vehicles. In addition, the safety of vehicles will increase since the vehicles will be informed about the hazard situations

    Improving Roadside Unit deployment in vehicular networks by exploiting genetic algorithms

    Get PDF
    Vehicular networks make use of the Roadside Units (RSUs) to enhance the communication capabilities of the vehicles in order to forward control messages and/or to provide Internet access to vehicles, drivers and passengers. Unfortunately, within vehicular networks, the wireless signal propagation is mostly affected by buildings and other obstacles (e.g., urban fixtures), in particular when considering the IEEE 802.11p standard. Therefore, a crowded RSU deployment may be required to ensure vehicular communications within urban environments. Furthermore, some applications, notably those applications related to safety, require a fast and reliable warning data transmission to the emergency services and traffic authorities. However, communication is not always possible in vehicular environments due to the lack of connectivity even employing multiple hops. To overcome the signal propagation problem and delayed warning notification time issues, an effective, smart, cost-effective and all-purpose RSU deployment policy should be put into place. In this paper, we propose the genetic algorithm for roadside unit deployment (GARSUD) system, which uses a genetic algorithm that is capable of automatically providing an RSU deployment suitable for any given road map layout. Our simulation results show that GARSUD is able to reduce the warning notification time (the time required to inform emergency authorities in traffic danger situations) and to improve vehicular communication capabilities within different density scenarios and complexity layouts
    corecore