13,620 research outputs found

    Optimal Phase Transitions in Compressed Sensing

    Full text link
    Compressed sensing deals with efficient recovery of analog signals from linear encodings. This paper presents a statistical study of compressed sensing by modeling the input signal as an i.i.d. process with known distribution. Three classes of encoders are considered, namely optimal nonlinear, optimal linear and random linear encoders. Focusing on optimal decoders, we investigate the fundamental tradeoff between measurement rate and reconstruction fidelity gauged by error probability and noise sensitivity in the absence and presence of measurement noise, respectively. The optimal phase transition threshold is determined as a functional of the input distribution and compared to suboptimal thresholds achieved by popular reconstruction algorithms. In particular, we show that Gaussian sensing matrices incur no penalty on the phase transition threshold with respect to optimal nonlinear encoding. Our results also provide a rigorous justification of previous results based on replica heuristics in the weak-noise regime.Comment: to appear in IEEE Transactions of Information Theor

    Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions

    Get PDF
    In this paper, we study the problem of compressed sensing using binary measurement matrices and 1\ell_1-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions % sparsity bounds for robust sparse recovery obtained using the RNSP are better by a factor of (33)/22.6(3 \sqrt{3})/2 \approx 2.6 compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal \textit{lower} bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal". So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit. \end{abstract}Comment: 28 pages, 3 figures, 5 table

    Compressed Sensing of Approximately-Sparse Signals: Phase Transitions and Optimal Reconstruction

    Full text link
    Compressed sensing is designed to measure sparse signals directly in a compressed form. However, most signals of interest are only "approximately sparse", i.e. even though the signal contains only a small fraction of relevant (large) components the other components are not strictly equal to zero, but are only close to zero. In this paper we model the approximately sparse signal with a Gaussian distribution of small components, and we study its compressed sensing with dense random matrices. We use replica calculations to determine the mean-squared error of the Bayes-optimal reconstruction for such signals, as a function of the variance of the small components, the density of large components and the measurement rate. We then use the G-AMP algorithm and we quantify the region of parameters for which this algorithm achieves optimality (for large systems). Finally, we show that in the region where the GAMP for the homogeneous measurement matrices is not optimal, a special "seeding" design of a spatially-coupled measurement matrix allows to restore optimality.Comment: 8 pages, 10 figure

    Expander 0\ell_0-Decoding

    Get PDF
    We introduce two new algorithms, Serial-0\ell_0 and Parallel-0\ell_0 for solving a large underdetermined linear system of equations y=AxRmy = Ax \in \mathbb{R}^m when it is known that xRnx \in \mathbb{R}^n has at most k<mk < m nonzero entries and that AA is the adjacency matrix of an unbalanced left dd-regular expander graph. The matrices in this class are sparse and allow a highly efficient implementation. A number of algorithms have been designed to work exclusively under this setting, composing the branch of combinatorial compressed-sensing (CCS). Serial-0\ell_0 and Parallel-0\ell_0 iteratively minimise yAx^0\|y - A\hat x\|_0 by successfully combining two desirable features of previous CCS algorithms: the information-preserving strategy of ER, and the parallel updating mechanism of SMP. We are able to link these elements and guarantee convergence in O(dnlogk)\mathcal{O}(dn \log k) operations by assuming that the signal is dissociated, meaning that all of the 2k2^k subset sums of the support of xx are pairwise different. However, we observe empirically that the signal need not be exactly dissociated in practice. Moreover, we observe Serial-0\ell_0 and Parallel-0\ell_0 to be able to solve large scale problems with a larger fraction of nonzeros than other algorithms when the number of measurements is substantially less than the signal length; in particular, they are able to reliably solve for a kk-sparse vector xRnx\in\mathbb{R}^n from mm expander measurements with n/m=103n/m=10^3 and k/mk/m up to four times greater than what is achievable by 1\ell_1-regularization from dense Gaussian measurements. Additionally, Serial-0\ell_0 and Parallel-0\ell_0 are observed to be able to solve large problems sizes in substantially less time than other algorithms for compressed sensing. In particular, Parallel-0\ell_0 is structured to take advantage of massively parallel architectures.Comment: 14 pages, 10 figure

    Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices

    Full text link
    Compressed sensing is a signal processing method that acquires data directly in a compressed form. This allows one to make less measurements than what was considered necessary to record a signal, enabling faster or more precise measurement protocols in a wide range of applications. Using an interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a strategy that allows compressed sensing to be performed at acquisition rates approaching to the theoretical optimal limits. In this paper, we give a more thorough presentation of our approach, and introduce many new results. We present the probabilistic approach to reconstruction and discuss its optimality and robustness. We detail the derivation of the message passing algorithm for reconstruction and expectation max- imization learning of signal-model parameters. We further develop the asymptotic analysis of the corresponding phase diagrams with and without measurement noise, for different distribution of signals, and discuss the best possible reconstruction performances regardless of the algorithm. We also present new efficient seeding matrices, test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe

    Improving A*OMP: Theoretical and Empirical Analyses With a Novel Dynamic Cost Model

    Full text link
    Best-first search has been recently utilized for compressed sensing (CS) by the A* orthogonal matching pursuit (A*OMP) algorithm. In this work, we concentrate on theoretical and empirical analyses of A*OMP. We present a restricted isometry property (RIP) based general condition for exact recovery of sparse signals via A*OMP. In addition, we develop online guarantees which promise improved recovery performance with the residue-based termination instead of the sparsity-based one. We demonstrate the recovery capabilities of A*OMP with extensive recovery simulations using the adaptive-multiplicative (AMul) cost model, which effectively compensates for the path length differences in the search tree. The presented results, involving phase transitions for different nonzero element distributions as well as recovery rates and average error, reveal not only the superior recovery accuracy of A*OMP, but also the improvements with the residue-based termination and the AMul cost model. Comparison of the run times indicate the speed up by the AMul cost model. We also demonstrate a hybrid of OMP and A?OMP to accelerate the search further. Finally, we run A*OMP on a sparse image to illustrate its recovery performance for more realistic coefcient distributions
    corecore