52 research outputs found

    Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance

    Full text link
    We consider a two player game, where a first player has to install a surveillance system within an admissible region. The second player needs to enter the the monitored area, visit a target region, and then leave the area, while minimizing his overall probability of detection. Both players know the target region, and the second player knows the surveillance installation details.Optimal trajectories for the second player are computed using a recently developed variant of the fast marching algorithm, which takes into account curvature constraints modeling the second player vehicle maneuverability. The surveillance system optimization leverages a reverse-mode semi-automatic differentiation procedure, estimating the gradient of the value function related to the sensor location in time N log N

    Geodesic Tracking via New Data-driven Connections of Cartan Type for Vascular Tree Tracking

    Full text link
    We introduce a data-driven version of the plus Cartan connection on the homogeneous space M2\mathbb{M}_2 of 2D positions and orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum, respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on M2\mathbb{M}_{2}. The data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these geodesics numerically via steepest descent on distance maps on M2\mathbb{M}_2 that we compute by a new modified anisotropic fast-marching method. Our experiments range from tracking single blood vessels with fixed endpoints to tracking complete vascular trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models. Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this article can be reproduced via documented Mathematica notebooks available at GitHub (https://github.com/NickyvdBerg/DataDrivenTracking)

    Generalized fast marching method for computing highest threatening trajectories with curvature constraints and detection ambiguities in distance and radial speed

    Get PDF
    Work presented at the 9th Conference on Curves and Surfaces, 2018, ArcachonWe present a recent numerical method devoted to computing curves that globally minimize an energy featuring both a data driven term, and a second order curvature penalizing term. Applications to image segmentation are discussed. We then describe in detail recent progress on radar network configuration, in which the optimal curves represent an opponent's trajectories

    Nonholonomic Motion Planning as Efficient as Piano Mover's

    Full text link
    We present an algorithm for non-holonomic motion planning (or 'parking a car') that is as computationally efficient as a simple approach to solving the famous Piano-mover's problem, where the non-holonomic constraints are ignored. The core of the approach is a graph-discretization of the problem. The graph-discretization is provably accurate in modeling the non-holonomic constraints, and yet is nearly as small as the straightforward regular grid discretization of the Piano-mover's problem into a 3D volume of 2D position plus angular orientation. Where the Piano mover's graph has one vertex and edges to six neighbors each, we have three vertices with a total of ten edges, increasing the graph size by less than a factor of two, and this factor does not depend on spatial or angular resolution. The local edge connections are organized so that they represent globally consistent turn and straight segments. The graph can be used with Dijkstra's algorithm, A*, value iteration or any other graph algorithm. Furthermore, the graph has a structure that lends itself to processing with deterministic massive parallelism. The turn and straight curves divide the configuration space into many parallel groups. We use this to develop a customized 'kernel-style' graph processing method. It results in an N-turn planner that requires no heuristics or load balancing and is as efficient as a simple solution to the Piano mover's problem even in sequential form. In parallel form it is many times faster than the sequential processing of the graph, and can run many times a second on a consumer grade GPU while exploring a configuration space pose grid with very high spatial and angular resolution. We prove approximation quality and computational complexity and demonstrate that it is a flexible, practical, reliable, and efficient component for a production solution.Comment: 34 pages, 37 figures, 9 tables, 4 graphs, 8 insert

    ChebLieNet: Invariant Spectral Graph NNs Turned Equivariant by Riemannian Geometry on Lie Groups

    Get PDF
    We introduce ChebLieNet, a group-equivariant method on (anisotropic) manifolds. Surfing on the success of graph- and group-based neural networks, we take advantage of the recent developments in the geometric deep learning field to derive a new approach to exploit any anisotropies in data. Via discrete approximations of Lie groups, we develop a graph neural network made of anisotropic convolutional layers (Chebyshev convolutions), spatial pooling and unpooling layers, and global pooling layers. Group equivariance is achieved via equivariant and invariant operators on graphs with anisotropic left-invariant Riemannian distance-based affinities encoded on the edges. Thanks to its simple form, the Riemannian metric can model any anisotropies, both in the spatial and orientation domains. This control on anisotropies of the Riemannian metrics allows to balance equivariance (anisotropic metric) against invariance (isotropic metric) of the graph convolution layers. Hence we open the doors to a better understanding of anisotropic properties. Furthermore, we empirically prove the existence of (data-dependent) sweet spots for anisotropic parameters on CIFAR10. This crucial result is evidence of the benefice we could get by exploiting anisotropic properties in data. We also evaluate the scalability of this approach on STL10 (image data) and ClimateNet (spherical data), showing its remarkable adaptability to diverse tasks.Comment: submitted to NeurIPS'21, https://openreview.net/forum?id=WsfXFxqZXR

    Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D

    Get PDF
    We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2)SE(2) and SE(3)SE(3). In our distance approximations we consider homogeneous norms on nilpotent groups that locally approximate SE(n)SE(n), and which are obtained via the exponential and logarithmic map on SE(n)SE(n). In a qualitative validation we show that the norms provide accurate approximations of the true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(n)SE(n). The quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The results show that 1) sub-Riemannian geometry is essential in achieving top performance and 2) that grouping via the fast analytic approximations performs almost equally, or better, than data-adaptive fast marching approaches on Rn\mathbb{R}^n and SE(n)SE(n).Comment: 18 pages, 9 figures, 3 tables, in review at JMI
    • …
    corecore