744 research outputs found

    A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots

    Get PDF
    Mobile robots are increasingly being applied in a variety of sectors, including agricultural, firefighting, and search and rescue operations. Robotics and autonomous technology research and development have played a major role in making this possible. Before a robot can reliably and effectively navigate a space without human aid, there are still several challenges to be addressed. When planning a path to its destination, the robot should be able to gather information from its surroundings and take the appropriate actions to avoid colliding with obstacles along the way. The following review analyses and compares 200 articles from two databases, Scopus and IEEE Xplore, and selects 60 articles as references from those articles. This evaluation focuses mostly on the accuracy of the different path-planning algorithms. Common collision-free path planning methodologies are examined in this paper, including classical or traditional and modern intelligence techniques, as well as both global and local approaches, in static and dynamic environments. Classical or traditional methods, such as Roadmaps (Visibility Graph and Voronoi Diagram), Potential Fields, and Cell Decomposition, and modern methodologies such as heuristic-based (Dijkstra Method, A* Algorithms, and D* Algorithms), metaheuristics algorithms (such as PSO, Bat Algorithm, ACO, and Genetic Algorithm), and neural systems such as fuzzy neural networks or fuzzy logic (FL) and Artificial Neural Networks (ANN) are described in this report. In this study, we outline the ideas, benefits, and downsides of modeling and path-searching technologies for a mobile robot

    An Approach to Improve Multi objective Path Planning for Mobile Robot Navigation using the Novel Quadrant Selection Method

    Get PDF
    Currently, automated and semi-automated industries need multiple objective path planning algorithms for mobile robot applications. The multi-objective optimisation algorithm takes more computational effort to provide optimal solutions. The proposed grid-based multi-objective global path planning algorithm [Quadrant selection algorithm (QSA)] plans the path by considering the direction of movements from starting position to the target position with minimum computational effort. Primarily, in this algorithm, the direction of movements is classified into quadrants. Based on the selection of the quadrant, the optimal paths are identified. In obstacle avoidance, the generated feasible paths are evaluated by the cumulative path distance travelled, and the cumulative angle turned to attain an optimal path. Finally, to ease the robot’s navigation, the obtained optimal path is further smoothed to avoid sharp turns and reduce the distance. The proposed QSA in total reduces the unnecessary search for paths in other quadrants. The developed algorithm is tested in different environments and compared with the existing algorithms based on the number of cells examined to obtain the optimal path. Unlike other algorithms, the proposed QSA provides an optimal path by dramatically reducing the number of cells examined. The experimental verification of the proposed QSA shows that the solution is practically implementable

    HYBRID FUZZY CONTROL AND ANT COLONY OPTIMIZATION BASED PATH PLANNING FOR WHEEL MOBILE ROBOT NAVIGATION

    Get PDF
    Wheeled Mobile Robot (WMR) is extremely important for active target tracking control and reactive obstacle avoidance in an unstructured environment. A WMR needs the best control performance an automatic path planning to maintain a very high level of accuracy. Therefore, the development of control strategies and path planning is very significant. Hence, research was carried out to investigate the control and path planning issues of WMR in dynamic environment. Several controllers such as conventional controller Proportional (P), Integral (I), Derivative (D) and Fuzzy Logic controller were investigated. A Hybrid Controller for differential WMR was proposed. Various aspects of the research on WMR such as kinematics model, conventional controller, fuzzy controller and hybrid controller were discussed. Overall it was found that on average the Hybrid Controller gives the best performance with 5.5s, 5.4s and 11s for target of 10x 10y, 30x10y and 60x20y respectively

    Autonomous robots path planning: An adaptive roadmap approach

    Get PDF
    Developing algorithms that allow robots to independently navigate unknown environments is a widely researched area of robotics. The potential for autonomous mobile robots use, in industrial and military applications, is boundless. Path planning entails computing a collision free path from a robots current position to a desired target. The problem of path planning for these robots remains underdeveloped. Computational complexity, path optimization and robustness are some of the issues that arise. Current algorithms do not generate general solutions for different situations and require user experience and optimization. Classical algorithms are computationally extensive. This reduces the possibility of their use in real time applications. Additionally, classical algorithms do not allow for any control over attributes of the generated path. A new roadmap path planning algorithm is proposed in this paper. This method generates waypoints, through which the robot can avoid obstacles and reach its goal. At the heart of this algorithm is a method to control the distance of the waypoints from obstacles, without increasing its computational complexity. Several simulations were run to illustrate the robustness and adaptability of this approach, compared to the most commonly used path planning methods

    Motion Planning for Autonomous Ground Vehicles Using Artificial Potential Fields: A Review

    Full text link
    Autonomous ground vehicle systems have found extensive potential and practical applications in the modern world. The development of an autonomous ground vehicle poses a significant challenge, particularly in identifying the best path plan, based on defined performance metrics such as safety margin, shortest time, and energy consumption. Various techniques for motion planning have been proposed by researchers, one of which is the use of artificial potential fields. Several authors in the past two decades have proposed various modified versions of the artificial potential field algorithms. The variations of the traditional APF approach have given an answer to prior shortcomings. This gives potential rise to a strategic survey on the improved versions of this algorithm. This study presents a review of motion planning for autonomous ground vehicles using artificial potential fields. Each article is evaluated based on criteria that involve the environment type, which may be either static or dynamic, the evaluation scenario, which may be real-time or simulated, and the method used for improving the search performance of the algorithm. All the customized designs of planning models are analyzed and evaluated. At the end, the results of the review are discussed, and future works are proposed

    A generalized laser simulator algorithm for optimal path planning in constraints environment

    Get PDF
    Path planning plays a vital role in autonomous mobile robot navigation, and it has thus become one of the most studied areas in robotics. Path planning refers to a robot's search for a collision-free and optimal path from a start point to a predefined goal position in a given environment. This research focuses on developing a novel path planning algorithm, called Generalized Laser Simulator (GLS), to solve the path planning problem of mobile robots in a constrained environment. This approach allows finding the path for a mobile robot while avoiding obstacles, searching for a goal, considering some constraints and finding an optimal path during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating a wave of points in all directions towards the goal point with adhering to constraints. A simulation study employing the proposed approach is applied to the grid map settings to determine a collision-free path from the start to goal positions. First, the grid mapping of the robot's workspace environment is constructed, and then the borders of the workspace environment are detected based on the new proposed function. This function guides the robot to move toward the desired goal. Two concepts have been implemented to find the best candidate point to move next: minimum distance to goal and maximum index distance to the boundary, integrated by negative probability to sort out the most preferred point for the robot trajectory determination. In order to construct an optimal collision-free path, an optimization step was included to find out the minimum distance within the candidate points that have been determined by GLS while adhering to particular constraint's rules and avoiding obstacles. The proposed algorithm will switch its working pattern based on the goal minimum and boundary maximum index distances. For static obstacle avoidance, the boundaries of the obstacle(s) are considered borders of the environment. However, the algorithm detects obstacles as a new border in dynamic obstacles once it occurs in front of the GLS waves. The proposed method has been tested in several test environments with different degrees of complexity. Twenty different arbitrary environments are categorized into four: Simple, complex, narrow, and maze, with five test environments in each. The results demonstrated that the proposed method could generate an optimal collision-free path. Moreover, the proposed algorithm result are compared to some common algorithms such as the A* algorithm, Probabilistic Road Map, RRT, Bi-directional RRT, and Laser Simulator algorithm to demonstrate its effectiveness. The suggested algorithm outperforms the competition in terms of improving path cost, smoothness, and search time. A statistical test was used to demonstrate the efficiency of the proposed algorithm over the compared methods. The GLS is 7.8 and 5.5 times faster than A* and LS, respectively, generating a path 1.2 and 1.5 times shorter than A* and LS. The mean value of the path cost achieved by the proposed approach is 4% and 15% lower than PRM and RRT, respectively. The mean path cost generated by the LS algorithm, on the other hand, is 14% higher than that generated by the PRM. Finally, to verify the performance of the developed method for generating a collision-free path, experimental studies were carried out using an existing WMR platform in labs and roads. The experimental work investigates complete autonomous WMR path planning in the lab and road environments using live video streaming. The local maps were built using data from live video streaming s by real-time image processing to detect the segments of the lab and road environments. The image processing includes several operations to apply GLS on the prepared local map. The proposed algorithm generates the path within the prepared local map to find the path between start-to-goal positions to avoid obstacles and adhere to constraints. The experimental test shows that the proposed method can generate the shortest path and best smooth trajectory from start to goal points in comparison with the laser simulator

    Exploratory Path Planning Using the Max-Min Ant System Algorithm

    Get PDF
    In the path planning problem for autonomous mobile robots, robots have to plan their path from the start position to the goal. In this paper, we investigate the application of the MMAS algorithm to the exploratory path planning problem, in which the robots should explore the environment at the same time they plan the path. Max-min ant system is an ant colony optimization algorithm that exploits the best solutions found. In addition, to analyze the quality of solutions obtained, we also analyze the traveled distance spent by robots in the first iteration of the algorithm. The environment is previously unknown to the robots, although it is represented by a topological map, that does not require precise information from the environment and provides a simple way to execute the navigation of the path. Thus, the paths are represented by a sequence of actions that the robots should execute to reach the goal. The navigation of the best solution found was implemented in a realistic robotic simulator. The proposed algorithm provides a very good performance in relation to a genetic algorithm and the well-known A* algorithm that deal with this problem
    • …
    corecore