2,769 research outputs found

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Affine-Invariant Triangulation of Spatio-Temporal Data with an Application to Image Retrieval

    Get PDF
    In the geometric data model for spatio-temporal data, introduced by Chomicki and Revesz , spatio-temporal data are modelled as a finite collection of triangles that are transformed by time-dependent affinities of the plane. To facilitate querying and animation of spatio-temporal data, we present a normal form for data in the geometric data model. We propose an algorithm for constructing this normal form via a spatio-temporal triangulation of geometric data objects. This triangulation algorithm generates new geometric data objects that partition the given objects both in space and in time. A particular property of the proposed partition is that it is invariant under time-dependent affine transformations, and hence independent of the particular choice of coordinate system used to describe the spatio-temporal data in. We can show that our algorithm works correctly and has a polynomial time complexity (of reasonably low degree in the number of input triangles and the maximal degree of the polynomial functions that describe the transformation functions). We also discuss several possible applications of this spatio-temporal triangulation. The application of our affine-invariant spatial triangulation method to image indexing and retrieval is discussed and an experimental evaluation is given in the context of bird images

    Software Porting of a 3D Reconstruction Algorithm to Razorcam Embedded System on Chip

    Get PDF
    A method is presented to calculate depth information for a UAV navigation system from Keypoints in two consecutive image frames using a monocular camera sensor as input and the OpenCV library. This method was first implemented in software and run on a general-purpose Intel CPU, then ported to the RazorCam Embedded Smart-Camera System and run on an ARM CPU onboard the Xilinx Zynq-7000. The results of performance and accuracy testing of the software implementation are then shown and analyzed, demonstrating a successful port of the software to the RazorCam embedded system on chip that could potentially be used onboard a UAV with tight constraints of size, weight, and power. The potential impacts will be seen through the continuation of this research in the Smart ES lab at University of Arkansas
    • …
    corecore