2,676 research outputs found

    Synchronous Context-Free Grammars and Optimal Linear Parsing Strategies

    Full text link
    Synchronous Context-Free Grammars (SCFGs), also known as syntax-directed translation schemata, are unlike context-free grammars in that they do not have a binary normal form. In general, parsing with SCFGs takes space and time polynomial in the length of the input strings, but with the degree of the polynomial depending on the permutations of the SCFG rules. We consider linear parsing strategies, which add one nonterminal at a time. We show that for a given input permutation, the problems of finding the linear parsing strategy with the minimum space and time complexity are both NP-hard

    Efficient parsing with linear context-free rewriting systems

    Get PDF

    Maude: specification and programming in rewriting logic

    Get PDF
    Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude

    A Variant of Earley Parsing

    Full text link
    The Earley algorithm is a widely used parsing method in natural language processing applications. We introduce a variant of Earley parsing that is based on a ``delayed'' recognition of constituents. This allows us to start the recognition of a constituent only in cases in which all of its subconstituents have been found within the input string. This is particularly advantageous in several cases in which partial analysis of a constituent cannot be completed and in general in all cases of productions sharing some suffix of their right-hand sides (even for different left-hand side nonterminals). Although the two algorithms result in the same asymptotic time and space complexity, from a practical perspective our algorithm improves the time and space requirements of the original method, as shown by reported experimental results.Comment: 12 pages, 1 Postscript figure, uses psfig.tex and llncs.st

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available

    Data-Oriented Parsing with Discontinuous Constituents and Function Tags

    Get PDF
    Statistical parsers are e ective but are typically limited to producing projective dependencies or constituents. On the other hand, linguisti- cally rich parsers recognize non-local relations and analyze both form and function phenomena but rely on extensive manual grammar development. We combine advantages of the two by building a statistical parser that produces richer analyses. We investigate new techniques to implement treebank-based parsers that allow for discontinuous constituents. We present two systems. One system is based on a string-rewriting Linear Context-Free Rewriting System (LCFRS), while using a Probabilistic Discontinuous Tree Substitution Grammar (PDTSG) to improve disambiguation performance. Another system encodes the discontinuities in the labels of phrase structure trees, allowing for efficient context-free grammar parsing. The two systems demonstrate that tree fragments as used in tree-substitution grammar improve disambiguation performance while capturing non-local relations on an as-needed basis. Additionally, we present results of models that produce function tags, resulting in a more linguistically adequate model of the data. We report substantial accuracy improvements in discontinuous parsing for German, English, and Dutch, including results on spoken Dutch

    Data-Oriented Parsing with discontinuous constituents and function tags

    Get PDF
    Statistical parsers are e ective but are typically limited to producing projective dependencies or constituents. On the other hand, linguisti- cally rich parsers recognize non-local relations and analyze both form and function phenomena but rely on extensive manual grammar development. We combine advantages of the two by building a statistical parser that produces richer analyses.  We investigate new techniques to implement treebank-based parsers that allow for discontinuous constituents. We present two systems. One system is based on a string-rewriting Linear Context-Free Rewriting System (LCFRS), while using a Probabilistic Discontinuous Tree Substitution Grammar (PDTSG) to improve disambiguation performance. Another system encodes the discontinuities in the labels of phrase structure trees, allowing for efficient context-free grammar parsing. The two systems demonstrate that tree fragments as used in tree-substitution grammar improve disambiguation performance while capturing non-local relations on an as-needed basis. Additionally, we present results of models that produce function tags, resulting in a more linguistically adequate model of the data. We report substantial accuracy improvements in discontinuous parsing for German, English, and Dutch, including results on spoken Dutch
    corecore