160 research outputs found

    Power System Stability Analysis Using Wide Area Measurement System

    Get PDF
    Advances in wide area measurement systems have transformed power system operation from simple visualization, state estimation, and post-mortem analysis tools to real-time protection and control at the systems level. Transient disturbances (such as lightning strikes) exist only for a fraction of a second but create transient stability issues and often trigger cascading type failures. The most common practice to prevent instabilities is with local generator out-of-step protection. Unfortunately, out-of-step protection operation of generators may not be fast enough, and an instability may take down nearby generators and the rest of the system by the time the local generator relay operates. Hence, it is important to assess power system stability over transmission lines as soon as the transient instability is detected instead of relying on purely localized out-of-step protection in generators. This thesis proposes a synchrophasor-based out-of-step prediction methodology at the transmission line level using wide area measurements from optimal phasor measurement unit (PMU) locations in the interconnected system. Voltage and current measurements from wide area measurement systems (WAMS) are utilized to find the swing angles. The proposed scheme was used to predict the first swing out-of-step condition in a Western Systems Coordinating Council (WSCC) 9 bus power system. A coherency analysis was first performed in this multi-machine system to determine the two coherent groups of generators. The coherent generator groups were then represented with a two-machine equivalent system, and the synchrophasor-based out-of-step prediction algorithm then applied to the reduced equivalent system. The coherency among the group of generators was determined within 100 ms for the contingency scenarios tested. The proposed technique is able to predict the instability 141.66 to 408.33 ms before the system actually reaches out-of-step conditions. The power swing trajectory is either a steady-state trajectory, monotonically increasing type (when the system becomes unstable), or oscillatory type (under stable conditions). Un- der large disturbance conditions, the swing could also become non-stationary. The mean and variance of the signal is not constant when it is monotonically increasing or non-stationary. An autoregressive integrated (ARI) approach was developed in this thesis, with differentiation of two successive samples done to make the mean and variance constant and facilitate time series prediction of the swing curve. Electromagnetic transient simulations with a real-time digital simulator (RTDS) were used to test the accuracy of the proposed algorithm with respect to predicting transient in- stability conditions. The studies show that the proposed method is computationally efficient and accurate for larger power systems. The proposed technique was also compared with a conventional two blinder technique and swing center voltage method. The proposed method was also implemented with actual PMU measurements from a relay (General Electric (GE) N60 relay). The testing was carried out with an interface between the N60 relay and the RTDS. The WSCC 9 bus system was modeled in the simulator and the analog time signals from the optimal location in the network communicated to the N60 relay. The synchrophasor data from the PMUs in the N60 were used to back-calculate the rotor angles of the generators in the system. Once the coherency was established, the swing curves for the coherent group of generators were found from time series prediction (ARI model). The test results with the actual PMUs match quite well with the results obtained from virtual PMU-based testing in the RTDS. The calculation times for the time series prediction are also very small. This thesis also discusses a novel out-of-step detection technique that was investigated in the course of this work for an IEEE Power Systems Relaying Committee J-5 Working Group document using real-time measurements of generator accelerating power. Using the derivative or second derivative of a measurement variable significantly amplifies the noise term and has limited the actual application of some methods in the literature, such as local measurements of voltage or voltage deviations at generator terminals. Another problem with the voltage based methods is taking an average over a period; the intermediate values cancel out and, as a result, just the first and last sample values are used to find the speed. This effectively means that the sample values in between are not used. The first solution proposed to overcome this is a polynomial fitting of the points of the calculated derivative points (to calculate speed). The second solution is the integral of the accelerating power method (this eliminates taking a derivative altogether). This technique shows the direct relationship of electrical power deviation to rotor acceleration and the integral of accelerating power to generator speed deviation. The accelerating power changes are straightforward to measure and the values obtained are more stable during transient conditions. A single machine infinite bus (SMIB) system was used for the purpose of verifying the proposed local measurement based method

    Development of cost-effective phasor measurement unit for wide area monitoring system applications

    Get PDF
    Sustained growth in the demand with unprecedented investments in the transmission infrastructure resulted in narrow operational margins for power system operators across the globe. As a result, power networks are operating near to stability limits. This has demanded the electrical utilities to explore new avenues for control and protection of wide area systems. Present supervisory control and data acquisition/energy management systems (SCADA/EMS) can only facilitate steady state model of the network, whereas synchrophasor measurements with GPS time stamp from wide area can provide dynamic view of power grid that enables supervision, and protection of power network and allow the operator to take necessary control/remedial measures in the new regime of grid operations. Construction of phasor measurement unit (PMU) that provide synchrophasors for the assessment of system state is widely accepted as an essential component for the successful execution of wide area monitoring system (WAMS) applications. Commercial PMUs comes with many constraints such as cost, proprietary hardware designs and software. All these constraints have limited the deployment of PMUs at high voltage transmission systems alone. This paper addresses the issues by developing a cost-effective PMU with open-source hardware, which can be easily modified as per the requirements of the applications. The proposed device is tested with IEEE standards

    Synchrophasor Assisted Efficient Fault Location Techniques In An Active Distribution Network

    Get PDF
    Reliability of an electrical system can be improved by an efficient fault location identification for the fast repair and remedial actions. This scenario changes when there are large penetrations of distributed generation (DG) which makes the distribution system an active distribution system. An efficient use of synchrophasors in the distribution network is studied with bidirectional power flow, harmonics and low angle difference consideration which are not prevalent in a transmission network. A synchrophasor estimation algorithm for the P class PMU is developed and applied to identify efficient fault location. A fault location technique using two ended synchronized measurement is derived from the principle of transmission line settings to work in a distribution network which is independent of line parameters. The distribution systems have less line length, harmonics and different sized line conductors, which affects the sensitivity of the synchronized measurements, Total Vector Error (TVE) and threshold for angular separation between different points in the network. A new signal processing method based on Discrete Fourier Transform (DFT) is utilized to work in a distribution network as specified in IEEE C37.118 (2011) standard for synchrophasor. A specific P and M classes of synchrophasor measurements are defined in the standard. A tradeoff between fast acting P class and detailed measurement M class is sought to work specifically in the distribution system settings which is subjected to large amount of penetrations from the renewable energy

    Time-Synchronized Full System State Estimation Considering Practical Implementation Challenges

    Full text link
    As phasor measurement units (PMUs) are usually placed on the highest voltage buses, many lower voltage levels of the bulk power system are not observed by them. This lack of visibility makes time-synchronized state estimation of the full system a challenging problem. We propose a Deep Neural network-based State Estimator (DeNSE) to overcome this problem. The DeNSE employs a Bayesian framework to indirectly combine inferences drawn from slow timescale but widespread supervisory control and data acquisition (SCADA) data with fast timescale but local PMU data to attain sub-second situational awareness of the entire system. The practical utility of the proposed approach is demonstrated by considering topology changes, non-Gaussian measurement noise, and bad data detection and correction. The results obtained using the IEEE 118-bus system show the superiority of the DeNSE over a purely SCADA state estimator, a SCADA-PMU hybrid state estimator, and a PMU-only linear state estimator from a techno-economic viability perspective. Lastly, the scalability of the DeNSE is proven by performing state estimation on a large and realistic 2000-bus Synthetic Texas system

    Data-Driven Flow and Injection Estimation in PMU-Unobservable Transmission Systems

    Full text link
    Fast and accurate knowledge of power flows and power injections is needed for a variety of applications in the electric grid. Phasor measurement units (PMUs) can be used to directly compute them at high speeds; however, a large number of PMUs will be needed for computing all the flows and injections. Similarly, if they are calculated from the outputs of a linear state estimator, then their accuracy will deteriorate due to the quadratic relationship between voltage and power. This paper employs machine learning to perform fast and accurate flow and injection estimation in power systems that are sparsely observed by PMUs. We train a deep neural network (DNN) to learn the mapping function between PMU measurements and power flows/injections. The relation between power flows and injections is incorporated into the DNN by adding a linear constraint to its loss function. The results obtained using the IEEE 118-bus system indicate that the proposed approach performs more accurate flow/injection estimation in severely unobservable power systems compared to other data-driven methods.Comment: 5 pages, 1 figur
    • …
    corecore