35,213 research outputs found

    Computing LZ77 in Run-Compressed Space

    Get PDF
    In this paper, we show that the LZ77 factorization of a text T {\in\Sigma^n} can be computed in O(R log n) bits of working space and O(n log R) time, R being the number of runs in the Burrows-Wheeler transform of T reversed. For extremely repetitive inputs, the working space can be as low as O(log n) bits: exponentially smaller than the text itself. As a direct consequence of our result, we show that a class of repetition-aware self-indexes based on a combination of run-length encoded BWT and LZ77 can be built in asymptotically optimal O(R + z) words of working space, z being the size of the LZ77 parsing

    A Concurrency-Optimal Binary Search Tree

    Full text link
    The paper presents the first \emph{concurrency-optimal} implementation of a binary search tree (BST). The implementation, based on a standard sequential implementation of an internal tree, ensures that every \emph{schedule} is accepted, i.e., interleaving of steps of the sequential code, unless linearizability is violated. To ensure this property, we use a novel read-write locking scheme that protects tree \emph{edges} in addition to nodes. Our implementation outperforms the state-of-the art BSTs on most basic workloads, which suggests that optimizing the set of accepted schedules of the sequential code can be an adequate design principle for efficient concurrent data structures

    3D environment mapping using the Kinect V2 and path planning based on RRT algorithms

    Get PDF
    This paper describes a 3D path planning system that is able to provide a solution trajectory for the automatic control of a robot. The proposed system uses a point cloud obtained from the robot workspace, with a Kinect V2 sensor to identify the interest regions and the obstacles of the environment. Our proposal includes a collision-free path planner based on the Rapidly-exploring Random Trees variant (RRT*), for a safe and optimal navigation of robots in 3D spaces. Results on RGB-D segmentation and recognition, point cloud processing, and comparisons between different RRT* algorithms, are presented.Peer ReviewedPostprint (published version

    In pursuit of the dynamic optimality conjecture

    Full text link
    In 1985, Sleator and Tarjan introduced the splay tree, a self-adjusting binary search tree algorithm. Splay trees were conjectured to perform within a constant factor as any offline rotation-based search tree algorithm on every sufficiently long sequence---any binary search tree algorithm that has this property is said to be dynamically optimal. However, currently neither splay trees nor any other tree algorithm is known to be dynamically optimal. Here we survey the progress that has been made in the almost thirty years since the conjecture was first formulated, and present a binary search tree algorithm that is dynamically optimal if any binary search tree algorithm is dynamically optimal.Comment: Preliminary version of paper to appear in the Conference on Space Efficient Data Structures, Streams and Algorithms to be held in August 2013 in honor of Ian Munro's 66th birthda

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string RR and a source string SS, a relative compression of SS with respect to RR is an encoding of SS as a sequence of references to substrings of RR. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string SS is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem
    • …
    corecore