572 research outputs found

    Optimal online and offline algorithms for robot-assisted restoration of barrier coverage

    Get PDF
    Cooperation between mobile robots and wireless sensor networks is a line of research that is currently attracting a lot of attention. In this context, we study the following problem of barrier coverage by stationary wireless sensors that are assisted by a mobile robot with the capacity to move sensors. Assume that nn sensors are initially arbitrarily distributed on a line segment barrier. Each sensor is said to cover the portion of the barrier that intersects with its sensing area. Owing to incorrect initial position, or the death of some of the sensors, the barrier is not completely covered by the sensors. We employ a mobile robot to move the sensors to final positions on the barrier such that barrier coverage is guaranteed. We seek algorithms that minimize the length of the robot's trajectory, since this allows the restoration of barrier coverage as soon as possible. We give an optimal linear-time offline algorithm that gives a minimum-length trajectory for a robot that starts at one end of the barrier and achieves the restoration of barrier coverage. We also study two different online models: one in which the online robot does not know the length of the barrier in advance, and the other in which the online robot knows the length of the barrier. For the case when the online robot does not know the length of the barrier, we prove a tight bound of 3/23/2 on the competitive ratio, and we give a tight lower bound of 5/45/4 on the competitive ratio in the other case. Thus for each case we give an optimal online algorithm.Comment: 20 page

    Automated Fiber Placement: A Review of History, Current Technologies, and Future Paths Forward

    Get PDF
    Automated fiber placement (AFP) is a composite manufacturing technique used to fabricate complex advanced air vehicle structures that are lightweight with superior qualities. The AFP process is intricate and complex with various phases of design, process planning, manufacturing, and inspection. An understanding of each of these phases is necessary to achieve the highest possible manufacturing quality. This literature review aims to summarize the entire AFP process from the design of the structure through inspection of the manufactured part to generate an overall understanding of the lifecycle of AFP manufacturing. The review culminates with highlighting the challenges and future directions for AFP with the goal of achieving a closed loop AFP process

    Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface

    Get PDF
    Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging

    Multi Agent Systems

    Get PDF
    Research on multi-agent systems is enlarging our future technical capabilities as humans and as an intelligent society. During recent years many effective applications have been implemented and are part of our daily life. These applications have agent-based models and methods as an important ingredient. Markets, finance world, robotics, medical technology, social negotiation, video games, big-data science, etc. are some of the branches where the knowledge gained through multi-agent simulations is necessary and where new software engineering tools are continuously created and tested in order to reach an effective technology transfer to impact our lives. This book brings together researchers working in several fields that cover the techniques, the challenges and the applications of multi-agent systems in a wide variety of aspects related to learning algorithms for different devices such as vehicles, robots and drones, computational optimization to reach a more efficient energy distribution in power grids and the use of social networks and decision strategies applied to the smart learning and education environments in emergent countries. We hope that this book can be useful and become a guide or reference to an audience interested in the developments and applications of multi-agent systems

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Context-Enabled Visualization Strategies for Automation Enabled Human-in-the-loop Inspection Systems to Enhance the Situation Awareness of Windstorm Risk Engineers

    Get PDF
    Insurance loss prevention survey, specifically windstorm risk inspection survey is the process of investigating potential damages associated with a building or structure in the event of an extreme weather condition such as a hurricane or tornado. Traditionally, the risk inspection process is highly subjective and depends on the skills of the engineer performing it. This dissertation investigates the sensemaking process of risk engineers while performing risk inspection with special focus on various factors influencing it. This research then investigates how context-based visualizations strategies enhance the situation awareness and performance of windstorm risk engineers. An initial study investigated the sensemaking process and situation awareness requirements of the windstorm risk engineers. The data frame theory of sensemaking was used as the framework to carry out this study. Ten windstorm risk engineers were interviewed, and the data collected were analyzed following an inductive thematic approach. The themes emerged from the data explained the sensemaking process of risk engineers, the process of making sense of contradicting information, importance of their experience level, internal and external biases influencing the inspection process, difficulty developing mental models, and potential technology interventions. More recently human in the loop systems such as drones have been used to improve the efficiency of windstorm risk inspection. This study provides recommendations to guide the design of such systems to support the sensemaking process and situation awareness of windstorm visual risk inspection. The second study investigated the effect of context-based visualization strategies to enhance the situation awareness of the windstorm risk engineers. More specifically, the study investigated how different types of information contribute towards the three levels of situation awareness. Following a between subjects study design 65 civil/construction engineering students completed this study. A checklist based and predictive display based decision aids were tested and found to be effective in supporting the situation awareness requirements as well as performance of windstorm risk engineers. However, the predictive display only helped with certain tasks like understanding the interaction among different components on the rooftop. For remaining tasks, checklist alone was sufficient. Moreover, the decision aids did not place any additional cognitive demand on the participants. This study helped us understand the advantages and disadvantages of the decision aids tested. The final study evaluated the transfer of training effect of the checklist and predictive display based decision aids. After one week of the previous study, participants completed a follow-up study without any decision aids. The performance and situation awareness of participants in the checklist and predictive display group did not change significantly from first trial to second trial. However, the performance and situation awareness of participants in the control condition improved significantly in the second trial. They attributed this to their exposure to SAGAT questionnaire in the first study. They knew what issues to look for and what tasks need to be completed in the simulation. The confounding effect of SAGAT questionnaires needs to be studied in future research efforts

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Design a CPW antenna on rubber substrate for multiband applications

    Get PDF
    This paper presents a compact CPW monopole antenna on rubber substrate for multiband applications. The multi band applications (2.45 and 3.65 GHz) is achieved on this antenna design with better antenna performances. Specially this antenna focused on ISM band application meanwhile some of slots (S1, S2, S3) have been used and attained another frequency band at 3.65 GHz for WiMAX application. The achievement of the antenna outcomes from this design that the bandwidth of 520 MHz for first band, the second band was 76 MHz for WiMAX application and the radiation efficiency attained around 90%. Moreover, the realized gain was at 4.27 dBi which overcome the most of existing design on that field. CST microwave studio has been used for antenna simulation
    • …
    corecore