51 research outputs found

    Beamforming Design for Joint Localization and Data Transmission in Distributed Antenna System

    Full text link
    A distributed antenna system is studied whose goal is to provide data communication and positioning functionalities to Mobile Stations (MSs). Each MS receives data from a number of Base Stations (BSs), and uses the received signal not only to extract the information but also to determine its location. This is done based on Time of Arrival (TOA) or Time Difference of Arrival (TDOA) measurements, depending on the assumed synchronization conditions. The problem of minimizing the overall power expenditure of the BSs under data throughput and localization accuracy requirements is formulated with respect to the beamforming vectors used at the BSs. The analysis covers both frequency-flat and frequency-selective channels, and accounts also for robustness constraints in the presence of parameter uncertainty. The proposed algorithmic solutions are based on rank-relaxation and Difference-of-Convex (DC) programming.Comment: 15 pages, 9 figures, and 1 table, accepted in IEEE Transactions on Vehicular Technolog

    A Practical Scheme for Frequency Offset Estimation in MIMO-OFDM Systems

    Get PDF
    This paper deals with training-assisted carrier frequency offset (CFO) estimation in multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems. The exact maximum likelihood (ML) solution to this problem is computationally demanding as it involves a line search over the CFO uncertainty range. To reduce the system complexity, we divide the CFO into an integer part plus a fractional part and select the pilot subcarriers such that the training sequences have a repetitive structure in the time domain. In this way, the fractional CFO is efficiently computed through a correlation-based approach, while ML methods are employed to estimate the integer CFO. Simulations indicate that the proposed scheme is superior to the existing alternatives in terms of both estimation accuracy and processing load

    Low-complexity frequency synchronization for wireless OFDM systems

    Get PDF
    Ph.DNUS-TU/E JOINT PH.D. PROGRAMM

    Advanced receiver structures for mobile MIMO multicarrier communication systems

    Get PDF
    Beyond third generation (3G) and fourth generation (4G) wireless communication systems are targeting far higher data rates, spectral efficiency and mobility requirements than existing 3G networks. By using multiple antennas at the transmitter and the receiver, multiple-input multiple-output (MIMO) technology allows improving both the spectral efficiency (bits/s/Hz), the coverage, and link reliability of the system. Multicarrier modulation such as orthogonal frequency division multiplexing (OFDM) is a powerful technique to handle impairments specific to the wireless radio channel. The combination of multicarrier modulation together with MIMO signaling provides a feasible physical layer technology for future beyond 3G and fourth generation communication systems. The theoretical benefits of MIMO and multicarrier modulation may not be fully achieved because the wireless transmission channels are time and frequency selective. Also, high data rates call for a large bandwidth and high carrier frequencies. As a result, an important Doppler spread is likely to be experienced, leading to variations of the channel over very short period of time. At the same time, transceiver front-end imperfections, mobility and rich scattering environments cause frequency synchronization errors. Unlike their single-carrier counterparts, multi-carrier transmissions are extremely sensitive to carrier frequency offsets (CFO). Therefore, reliable channel estimation and frequency synchronization are necessary to obtain the benefits of MIMO OFDM in mobile systems. These two topics are the main research problems in this thesis. An algorithm for the joint estimation and tracking of channel and CFO parameters in MIMO OFDM is developed in this thesis. A specific state-space model is introduced for MIMO OFDM systems impaired by multiple carrier frequency offsets under time-frequency selective fading. In MIMO systems, multiple frequency offsets are justified by mobility, rich scattering environment and large angle spread, as well as potentially separate radio frequency - intermediate frequency chains. An extended Kalman filter stage tracks channel and CFO parameters. Tracking takes place in time domain, which ensures reduced computational complexity, robustness to estimation errors as well as low estimation variance in comparison to frequency domain processing. The thesis also addresses the problem of blind carrier frequency synchronization in OFDM. Blind techniques exploit statistical or structural properties of the OFDM modulation. Two novel approaches are proposed for blind fine CFO estimation. The first one aims at restoring the orthogonality of the OFDM transmission by exploiting the properties of the received signal covariance matrix. The second approach is a subspace algorithm exploiting the correlation of the channel frequency response among the subcarriers. Both methods achieve reliable estimation of the CFO regardless of multipath fading. The subspace algorithm needs extremely small sample support, which is a key feature in the face of time-selective channels. Finally, the Cramér-Rao (CRB) bound is established for the problem in order to assess the large sample performance of the proposed algorithms.reviewe

    MIMO-OFDM communication systems: channel estimation and wireless location

    Get PDF
    In this new information age, high data rate and strong reliability features our wireless communication systems and is becoming the dominant factor for a successful deployment of commercial networks. MIMO-OFDM (multiple input multiple output-orthogonal frequency division multiplexing), a new wireless broadband technology, has gained great popularity for its capability of high rate transmission and its robustness against multi-path fading and other channel impairments. A major challenge to MIMO-OFDM systems is how to obtain the channel state information accurately and promptly for coherent detection of information symbols and channel synchronization. In the first part, this dissertation formulates the channel estimation problem for MIMO-OFDM systems and proposes a pilot-tone based estimation algorithm. A complex equivalent base-band MIMO-OFDM signal model is presented by matrix representation. By choosing equally-spaced and equally-powered pilot tones from sub-carriers in one OFDM symbol, a down-sampled version of the original signal model is obtained. Furthermore, this signal model is transformed into a linear form solvable for the LS (least-square) estimation algorithm. Based on the resultant model, a simple pilot-tone design is proposed in the form of a unitary matrix, whose rows stand for different pilot-tone sets in the frequency domain and whose columns represent distinct transmit antennas in the spatial domain. From the analysis and synthesis of the pilot-tone design in this dissertation, our estimation algorithm can reduce the computational complexity inherited in MIMO systems by the fact that the pilot-tone matrix is essentially a unitary matrix, and is proven an optimal channel estimator in the sense of achieving the minimum MSE (mean squared error) of channel estimation for a fixed power of pilot tones. In the second part, this dissertation addresses the wireless location problem in WiMax (worldwide interoperability for microwave access) networks, which is mainly based on the MIMO-OFDM technology. From the measurement data of TDOA (time difference of arrival), AOA (angle of arrival) or a combination of those two, a quasi-linear form is formulated for an LS-type solution. It is assumed that the observation data is corrupted by a zero-mean AWGN (additive white Gaussian noise) with a very small variance. Under this assumption, the noise term in the quasi-liner form is proved to hold a normal distribution approximately. Hence the ML (maximum-likelihood) estimation and the LS-type solution are equivalent. But the ML estimation technique is not feasible here due to its computational complexity and the possible nonexistence of the optimal solution. Our proposed method is capable of estimating the MS location very accurately with a much less amount of computations. A final result of the MS (mobile station) location estimation, however, cannot be obtained directly from the LS-type solution without bringing in another independent constraint. To solve this problem, the Lagrange multiplier is explored to find the optimal solution to the constrained LS-type optimization problem

    Joint channel estimation and data detection for OFDM systems over doubly selective channels

    Get PDF
    In this paper, a joint channel estimation and data detection algorithm is proposed for OFDM systems under doubly selective channels (DSCs). After representing the DSC using Karhunen-Loève basis expansion model (K-L BEM), the proposed algorithm is developed based on the expectationmaximization (EM) algorithm. Basically, it is an iterative algorithm including two steps at each iteration. In the first step, the unknown coefficients in K-L BEM are first integrated out to obtain a function which only depends on data, and meanwhile, a maximum a posteriori (MAP) channel estimator is obtained. In the second step, data are directly detected by a novel approach based on the function obtained in the first step. Moreover, a Bayesian Cramer-Rao Lower Bound (BCRB) which is valid for any channel estimator is also derived to evaluate the performance of the proposed channel estimator. The effectiveness of the proposed algorithm is finally corroborated by simulation results. ©2009 IEEE.published_or_final_versionThe 20th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2009), Tokyo, Japan. 13-16 September 2009. In Proceedings of the 20th PIMRC, 2009, p. 446-45
    corecore