1,415 research outputs found

    Investigation of antenna pattern constraints for passive geosynchronous microwave imaging radiometers

    Get PDF
    Progress by investigators at Georgia Tech in defining the requirements for large space antennas for passive microwave Earth imaging systems is reviewed. In order to determine antenna constraints (e.g., the aperture size, illumination taper, and gain uncertainty limits) necessary for the retrieval of geophysical parameters (e.g., rain rate) with adequate spatial resolution and accuracy, a numerical simulation of the passive microwave observation and retrieval process is being developed. Due to the small spatial scale of precipitation and the nonlinear relationships between precipitation parameters (e.g., rain rate, water density profile) and observed brightness temperatures, the retrieval of precipitation parameters are of primary interest in the simulation studies. Major components of the simulation are described as well as progress and plans for completion. The overall goal of providing quantitative assessments of the accuracy of candidate geosynchronous and low-Earth orbiting imaging systems will continue under a separate grant

    High precision hybrid RF and ultrasonic chirp-based ranging for low-power IoT nodes

    Get PDF
    Hybrid acoustic-RF systems offer excellent ranging accuracy, yet they typically come at a power consumption that is too high to meet the energy constraints of mobile IoT nodes. We combine pulse compression and synchronized wake-ups to achieve a ranging solution that limits the active time of the nodes to 1 ms. Hence, an ultra low-power consumption of 9.015 µW for a single measurement is achieved. The operation time is estimated on 8.5 years on a CR2032 coin cell battery at a 1 Hz update rate, which is over 250 times larger than state-of-the-art RF-based positioning systems. Measurements based on a proof-of-concept hardware platform show median distance error values below 10 cm. Both simulations and measurements demonstrate that the accuracy is reduced at low signal-to-noise ratios and when reflections occur. We introduce three methods that enhance the distance measurements at a low extra processing power cost. Hence, we validate in realistic environments that the centimeter accuracy can be obtained within the energy budget of mobile devices and IoT nodes. The proposed hybrid signal ranging system can be extended to perform accurate, low-power indoor positioning

    Thermal Resonance in Signal Transmission

    Get PDF
    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.Comment: To appear in Phys. Rev.

    Large-Scale Optical Neural Networks based on Photoelectric Multiplication

    Full text link
    Recent success in deep neural networks has generated strong interest in hardware accelerators to improve speed and energy consumption. This paper presents a new type of photonic accelerator based on coherent detection that is scalable to large (N106N \gtrsim 10^6) networks and can be operated at high (GHz) speeds and very low (sub-aJ) energies per multiply-and-accumulate (MAC), using the massive spatial multiplexing enabled by standard free-space optical components. In contrast to previous approaches, both weights and inputs are optically encoded so that the network can be reprogrammed and trained on the fly. Simulations of the network using models for digit- and image-classification reveal a "standard quantum limit" for optical neural networks, set by photodetector shot noise. This bound, which can be as low as 50 zJ/MAC, suggests performance below the thermodynamic (Landauer) limit for digital irreversible computation is theoretically possible in this device. The proposed accelerator can implement both fully-connected and convolutional networks. We also present a scheme for back-propagation and training that can be performed in the same hardware. This architecture will enable a new class of ultra-low-energy processors for deep learning.Comment: Text: 10 pages, 5 figures, 1 table. Supplementary: 8 pages, 5, figures, 2 table
    corecore