59 research outputs found

    Optimal Nonpreemptive Scheduling in a Smart Grid Model

    Get PDF
    We study a scheduling problem arising in demand response management in smart grid. Consumers send in power requests with a flexible feasible time interval during which their requests can be served. The grid controller, upon receiving power requests, schedules each request within the specified interval. The electricity cost is measured by a convex function of the load in each timeslot. The objective is to schedule all requests with the minimum total electricity cost. Previous work has studied cases where jobs have unit power requirement and unit duration. We extend the study to arbitrary power requirement and duration, which has been shown to be NP-hard. We give the first online algorithm for the general problem, and prove that the worst case competitive ratio is asymptotically optimal. We also prove that the problem is fixed parameter tractable. Due to space limit, the missing proofs are presented in the full paper

    Limited Preemptive Scheduling for Real-Time Systems: a Survey

    Get PDF
    The question whether preemptive algorithms are better than nonpreemptive ones for scheduling a set of real-time tasks has been debated for a long time in the research community. In fact, especially under fixed priority systems, each approach has advantages and disadvantages, and no one dominates the other when both predictability and efficiency have to be taken into account in the system design. Recently, limited preemption models have been proposed as a viable alternative between the two extreme cases of fully preemptive and nonpreemptive scheduling. This paper presents a survey of the existing approaches for reducing preemptions and compares them under different metrics, providing both qualitative and quantitative performance evaluations

    Runtime Scheduling, Allocation, and Execution of Real-Time Hardware Tasks onto Xilinx FPGAs Subject to Fault Occurrence

    Get PDF
    This paper describes a novel way to exploit the computation capabilities delivered by modern Field-Programmable Gate Arrays (FPGAs), not only towards a higher performance, but also towards an improved reliability. Computation-specific pieces of circuitry are dynamically scheduled and allocated to different resources on the chip based on a set of novel algorithms which are described in detail in this article. These algorithms consider most of the technological constraints existing in modern partially reconfigurable FPGAs as well as spontaneously occurring faults and emerging permanent damage in the silicon substrate of the chip. In addition, the algorithms target other important aspects such as communications and synchronization among the different computations that are carried out, either concurrently or at different times. The effectiveness of the proposed algorithms is tested by means of a wide range of synthetic simulations, and, notably, a proof-of-concept implementation of them using real FPGA hardware is outlined

    Peak Demand Minimization via Sliced Strip Packing

    Get PDF

    Non-preemptive Scheduling in a Smart Grid Model and its Implications on Machine Minimization

    Get PDF
    We study a scheduling problem arising in demand response management in smart grid. Consumers send in power requests with a flexible feasible time interval during which their requests can be served. The grid controller, upon receiving power requests, schedules each request within the specified interval. The electricity cost is measured by a convex function of the load in each timeslot. The objective is to schedule all requests with the minimum total electricity cost. Previous work has studied cases where jobs have unit power requirement and unit duration. We extend the study to arbitrary power requirement and duration, which has been shown to be NP-hard. We give the first online algorithm for the general problem, and prove that the problem is fixed parameter tractable. We also show that the online algorithm is asymptotically optimal when the objective is to minimize the peak load. In addition, we observe that the classical non-preemptive machine minimization problem is a special case of the smart grid problem with min-peak objective, and show that we can solve the non-preemptive machine minimization problem asymptotically optimally

    Mobile edge computing assisted green scheduling of on-move electric vehicles

    Get PDF
    Mobile edge computing (MEC) has been proposed as a promising solution, which enables the content processing at the edges of the network helping to significantly improve the quality of experience (QoE) of end users. In this article, we aim to utilize the MEC facilities integrated with time-varying renewable energy resources for charging/discharging scheduling known as green scheduling of on-move electric vehicles (EVs) in a geographical wide area comprising of multiple charging stations (CSs). In the proposed system, the charging/discharging demands and the contextual information of EVs are first transmitted to nearby edge servers. With instantaneous electricity load/pricing and the availability of renewable energy at nearby CSs collected by aggregators, a weighted social-welfare maximization problem is then solved at the edges using greedy-based algorithms to choose the best CS for the EV’s service. From the system point of view, our results reveal that compared to cloud-based scheme, the proposed MEC-assisted EVs scheduling system significantly improves the complexity burden, boosts the satisfaction (QoE) of EVs’ drivers by localizing the traffic at nearby CSs, and further helps to efficiently utilize the renewable energy across CSs. Furthermore, our greedy-based algorithm, which utilizes the internal updating heuristics, outperforms some baseline solutions in terms of social welfare and power grid ancillary services
    • …
    corecore