21,044 research outputs found

    Optimal Neural Spike Classification

    Get PDF
    Being able to record the electrical activities of a number of neurons simultaneously is likely to be important in the study of the functional organization of networks of real neurons. Using one extracellular microelectrode to record from several neurons is one approach to studying the response properties of sets of adjacent and therefore likely related neurons. However, to do this, it is necessary to correctly classify the signals generated by these different neurons. This paper considers this problem of classifying the signals in such an extracellular recording, based upon their shapes, and specifically considers the classification of signals in the case when spikes overlap temporally

    Training Probabilistic Spiking Neural Networks with First-to-spike Decoding

    Full text link
    Third-generation neural networks, or Spiking Neural Networks (SNNs), aim at harnessing the energy efficiency of spike-domain processing by building on computing elements that operate on, and exchange, spikes. In this paper, the problem of training a two-layer SNN is studied for the purpose of classification, under a Generalized Linear Model (GLM) probabilistic neural model that was previously considered within the computational neuroscience literature. Conventional classification rules for SNNs operate offline based on the number of output spikes at each output neuron. In contrast, a novel training method is proposed here for a first-to-spike decoding rule, whereby the SNN can perform an early classification decision once spike firing is detected at an output neuron. Numerical results bring insights into the optimal parameter selection for the GLM neuron and on the accuracy-complexity trade-off performance of conventional and first-to-spike decoding.Comment: A shorter version will be published on Proc. IEEE ICASSP 201

    Unsupervised Learning with Self-Organizing Spiking Neural Networks

    Full text link
    We present a system comprising a hybridization of self-organized map (SOM) properties with spiking neural networks (SNNs) that retain many of the features of SOMs. Networks are trained in an unsupervised manner to learn a self-organized lattice of filters via excitatory-inhibitory interactions among populations of neurons. We develop and test various inhibition strategies, such as growing with inter-neuron distance and two distinct levels of inhibition. The quality of the unsupervised learning algorithm is evaluated using examples with known labels. Several biologically-inspired classification tools are proposed and compared, including population-level confidence rating, and n-grams using spike motif algorithm. Using the optimal choice of parameters, our approach produces improvements over state-of-art spiking neural networks

    A 32-Channel MCU-Based Feature Extraction and Classification for Scalable on-Node Spike Sorting

    No full text
    This paper describes a new hardware-efficient method and implementation for neural spike sorting based on selection of a channel-specific near-optimal subset of fea- tures given a larger predefined set. For each channel, real- time classification is achieved using a simple decision matrix that considers the features that provide the highest separability determined through off-line training. A 32-channel system for on- line feature extraction and classification has been implemented in an ARM Cortex-M0+ processor. Measured results of the hardware platform consumes 268 W per channel during spike sorting (includes detection). The proposed method provides at least x10 reduction in computational requirements compared to literature, while achieving an average classification error of less than 10% across wide range of datasets and noise levels

    Heuristic Spike Sorting Tuner (HSST), a framework to determine optimal parameter selection for a generic spike sorting algorithm

    Get PDF
    Extracellular microelectrodes frequently record neural activity from more than one neuron in the vicinity of the electrode. The process of labeling each recorded spike waveform with the identity of its source neuron is called spike sorting and is often approached from an abstracted statistical perspective. However, these approaches do not consider neurophysiological realities and may ignore important features that could improve the accuracy of these methods. Further, standard algorithms typically require selection of at least one free parameter, which can have significant effects on the quality of the output. We describe a Heuristic Spike Sorting Tuner (HSST) that determines the optimal choice of the free parameters for a given spike sorting algorithm based on the neurophysiological qualification of unit isolation and signal discrimination. A set of heuristic metrics are used to score the output of a spike sorting algorithm over a range of free parameters resulting in optimal sorting quality. We demonstrate that these metrics can be used to tune parameters in several spike sorting algorithms. The HSST algorithm shows robustness to variations in signal to noise ratio, number and relative size of units per channel. Moreover, the HSST algorithm is computationally efficient, operates unsupervised, and is parallelizable for batch processing

    Multi-layered Spiking Neural Network with Target Timestamp Threshold Adaptation and STDP

    Full text link
    Spiking neural networks (SNNs) are good candidates to produce ultra-energy-efficient hardware. However, the performance of these models is currently behind traditional methods. Introducing multi-layered SNNs is a promising way to reduce this gap. We propose in this paper a new threshold adaptation system which uses a timestamp objective at which neurons should fire. We show that our method leads to state-of-the-art classification rates on the MNIST dataset (98.60%) and the Faces/Motorbikes dataset (99.46%) with an unsupervised SNN followed by a linear SVM. We also investigate the sparsity level of the network by testing different inhibition policies and STDP rules

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure
    corecore