2,825 research outputs found

    An Approximately Optimal Algorithm for Scheduling Phasor Data Transmissions in Smart Grid Networks

    Full text link
    In this paper, we devise a scheduling algorithm for ordering transmission of synchrophasor data from the substation to the control center in as short a time frame as possible, within the realtime hierarchical communications infrastructure in the electric grid. The problem is cast in the framework of the classic job scheduling with precedence constraints. The optimization setup comprises the number of phasor measurement units (PMUs) to be installed on the grid, a weight associated with each PMU, processing time at the control center for the PMUs, and precedence constraints between the PMUs. The solution to the PMU placement problem yields the optimum number of PMUs to be installed on the grid, while the processing times are picked uniformly at random from a predefined set. The weight associated with each PMU and the precedence constraints are both assumed known. The scheduling problem is provably NP-hard, so we resort to approximation algorithms which provide solutions that are suboptimal yet possessing polynomial time complexity. A lower bound on the optimal schedule is derived using branch and bound techniques, and its performance evaluated using standard IEEE test bus systems. The scheduling policy is power grid-centric, since it takes into account the electrical properties of the network under consideration.Comment: 8 pages, published in IEEE Transactions on Smart Grid, October 201

    Towards Loosely-Coupled Programming on Petascale Systems

    Full text link
    We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this approach to enable the use of petascale systems by a broader user community, and with greater ease. Our work enables the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications. This approach allows a new-and potentially far larger-class of applications to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present the challenges of I/O performance encountered in making this model practical, and show results using both microbenchmarks and real applications from two domains: economic energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 160K processor-cores with high efficiency, and can achieve sustained execution rates of thousands of tasks per second.Comment: IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis (SuperComputing/SC) 200

    Distributed data mining in grid computing environments

    Get PDF
    The official published version of this article can be found at the link below.The computing-intensive data mining for inherently Internet-wide distributed data, referred to as Distributed Data Mining (DDM), calls for the support of a powerful Grid with an effective scheduling framework. DDM often shares the computing paradigm of local processing and global synthesizing. It involves every phase of Data Mining (DM) processes, which makes the workflow of DDM very complex and can be modelled only by a Directed Acyclic Graph (DAG) with multiple data entries. Motivated by the need for a practical solution of the Grid scheduling problem for the DDM workflow, this paper proposes a novel two-phase scheduling framework, including External Scheduling and Internal Scheduling, on a two-level Grid architecture (InterGrid, IntraGrid). Currently a DM IntraGrid, named DMGCE (Data Mining Grid Computing Environment), has been developed with a dynamic scheduling framework for competitive DAGs in a heterogeneous computing environment. This system is implemented in an established Multi-Agent System (MAS) environment, in which the reuse of existing DM algorithms is achieved by encapsulating them into agents. Practical classification problems from oil well logging analysis are used to measure the system performance. The detailed experiment procedure and result analysis are also discussed in this paper

    A Heterogeneous High Performance Computing Framework For Ill-Structured Spatial Join Processing

    Get PDF
    The frequently employed spatial join processing over two large layers of polygonal datasets to detect cross-layer polygon pairs (CPP) satisfying a join-predicate faces challenges common to ill-structured sparse problems, namely, that of identifying the few intersecting cross-layer edges out of the quadratic universe. The algorithmic engineering challenge is compounded by GPGPU SIMT architecture. Spatial join involves lightweight filter phase typically using overlap test over minimum bounding rectangles (MBRs) to discard majority of CPPs, followed by refinement phase to rigorously test the join predicate over the edges of the surviving CPPs. In this dissertation, we develop new techniques - algorithms, data structure, i/o, load balancing and system implementation - to accelerate the two-phase spatial-join processing. We present a new filtering technique, called Common MBR Filter (CMF), which changes the overall characteristic of the spatial join algorithms wherein the refinement phase is no longer the computational bottleneck. CMF is designed based on the insight that intersecting cross-layer edges must lie within the rectangular intersection of the MBRs of CPPs, their common MBRs (CMBR). We also address a key limitation of CMF for class of spatial datasets with either large or dense active CMBRs by extended CMF, called CMF-grid, that effectively employs both CMBR and grid techniques by embedding a uniform grid over CMBR of each CPP, but of suitably engineered sizes for different CPPs. To show efficiency of CMF-based filters, extensive mathematical and experimental analysis is provided. Then, two GPU-based spatial join systems are proposed based on two CMF versions including four components: 1) sort-based MBR filter, 2) CMF/CMF-grid, 3) point-in-polygon test, and, 4) edge-intersection test. The systems show two orders of magnitude speedup over the optimized sequential GEOS C++ library. Furthermore, we present a distributed system of heterogeneous compute nodes to exploit GPU-CPU computing in order to scale up the computation. A load balancing model based on Integer Linear Programming (ILP) is formulated for this system. We also provide three heuristic algorithms to approximate the ILP. Finally, we develop MPI-cuda-GIS system based on this heterogeneous computing model by integrating our CUDA-based GPU system into a newly designed distributed framework designed based on Message Passing Interface (MPI). Experimental results show good scalability and performance of MPI-cuda-GIS system
    • …
    corecore