2,011 research outputs found

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    Pulse Shaping Diversity to Enhance Throughput in Ultra-Dense Small Cell Networks

    Full text link
    Spatial multiplexing (SM) gains in multiple input multiple output (MIMO) cellular networks are limited when used in combination with ultra-dense small cell networks. This limitation is due to large spatial correlation among channel pairs. More specifically, it is due to i) line-of-sight (LOS) communication between user equipment (UE) and base station (BS) and ii) in-sufficient spacing between antenna elements. We propose to shape transmit signals at adjacent antennas with distinct interpolating filters which introduces pulse shaping diversity eventually leading to improved SINR and throughput at the UEs. In this technique, each antenna transmits its own data stream with a relative offset with respect to adjacent antenna. The delay which must be a fraction of symbol period is interpolated with the pulse shaped signal and generates a virtual MIMO channel that leads to improved diversity and SINR at the receiver. Note that non-integral sampling periods with inter-symbol interference (ISI) should be mitigated at the receiver. For this, we propose to use a fractionally spaced equalizer (FSE) designed based on the minimum mean squared error (MMSE) criterion. Simulation results show that for a 2x2 MIMO and with inter-site-distance (ISD) of 50 m, the median received SINR and throughput at the UE improves by a factor of 11 dB and 2x, respectively, which verifies that pulse shaping can overcome poor SM gains in ultra-dense small cell networks.Comment: Accepted to 17th IEEE International Workshop on Signal Processing Advances in Wireless Communication

    High Data Rate Wireless Communication Using MIMO

    Get PDF
    Wireless communication is the most popular and rapidly growing sector of the commu-nication industry. The permitted bandwidth for every service is very limited and the demand of data transferring is increasing day by day. Moreover, the channels are further limited by multipath and fading. Hence, it is a big challenge to provide excellent quality of service and meet the growing demand with the existing bandwidth limitation. MIMO is one very promising technique to enhance the data rate. Fading has been considered as problem for high quality with low outage wireless com-munication. However, multiple-input multiple-output (MIMO) antenna has used this fading phenomenon not only to mitigate the fading but also to exploit this fading to obtain high data rate through spatial multiplexing. In this thesis, MIMO spatial multiplexing has been studied in details. Different MIMO channel models, space time coding, and channel capacity constraints as well as the fac-tors those limits the capacity are studied. One major aim of this study is to find a com-bined optimal solution for MIMO system so that it could provide high rate data transfer.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Characterization and Enhancement of Antenna System Performance in Compact MIMO Terminals

    Get PDF
    Co-band multiple-antenna implementation in compact user terminals is necessary for harvesting the full potential of diversity and multiple-input multiple-output (MIMO) technology in cellular communication systems. The recent worldwide deployment of Long Term Evolution (LTE), which requires the use of MIMO technology in the downlink, adds to the urgency of achieving both practical and optimal multiple-antenna systems in user terminals. Contrary to conventional understanding, an optimal multiple-antenna implementation does not only involve the design and placement of antenna elements in the terminals, but extends beyond the antenna elements and common antenna parameters to comprise interactions with the near field user and the propagation environment. Moreover, these interactions are non-static, which implies that the multiple-antenna system must adapt to the prevailing overall communication channel in order to assure the highest performance gains. This doctoral thesis aims to address several key issues in optimal multiple-antenna system design for compact multi-band MIMO terminals, with the first half (Papers I to III) focusing on the performance characterization of such terminals in the presence of user interaction and propagation channel, under the challenging constraint that the terminals are compact. The second half of the thesis (Papers IV to VI) considers two performance enhancement approaches suitable for compact MIMO terminals in realistic usage conditions. In particular, the potential benefits of harmonizing compact multiple-antenna systems with the propagation channel and user influence are determined with respect to reconfigurability in antenna patterns and impedance matching circuits. In Paper I, the diversity performance of internal multiple antennas with multi-band coverage in a mock-up with the size of a typical mobile handset is investigated in different user interaction scenarios. For comparison, a second mock-up with only one multi-band antenna is also evaluated in the same user cases. An ideal uniform propagation environment is assumed. The performance at frequency bands below and above 1 GHz are presented and analyzed in detail. Paper II extends the study in Paper I by evaluating the single-input multiple-output (SIMO) and MIMO capacity performance of the same antenna prototypes under the same user interaction scenarios and propagation environment. In Paper III, the impacts of gain imbalance and antenna separation on the throughput performance of a dual-dipole configuration are studied at frequencies below and above 1 GHz in a repeatable dynamic multi-path environment, using a live HSPA network. Since the compactness of a user terminal has implications on the antenna separation and gain imbalance of the multiple antennas, the focus is to gain knowledge on how these two factors affect the end user experience in practice. In Paper IV, three simple dual-antenna topologies implemented in compact smart phone prototypes of identical form factors are evaluated in MIMO channel measurements in noise-limited and interference-limited urban scenarios. Each dual-antenna topology is intentionally designed to provide a distinct set of antenna patterns. The goal is to investigate the potential of antenna system design as one of the key performance differentiators in real terminal implementations. Paper V extends the work in Paper IV by introducing user interaction to the same MIMO channel measurement setup. Furthermore, the focus of this paper is on the evaluation of both the average and local channel performances and their potential enhancements. Finally, Paper VI ascertains the potential capacity gains of applying uncoupled adaptive matching to a compact dual-antenna terminal in an indoor office environment, under a realistic user scenario. The performance gains are evaluated by means of extensive MIMO channel measurements at frequency bands below and above 1 GHz

    Space Station communications and tracking systems modeling and RF link simulation

    Get PDF
    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort
    corecore