89 research outputs found

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Morphing Planar Graph Drawings Optimally

    Full text link
    We provide an algorithm for computing a planar morph between any two planar straight-line drawings of any nn-vertex plane graph in O(n)O(n) morphing steps, thus improving upon the previously best known O(n2)O(n^2) upper bound. Further, we prove that our algorithm is optimal, that is, we show that there exist two planar straight-line drawings Γs\Gamma_s and Γt\Gamma_t of an nn-vertex plane graph GG such that any planar morph between Γs\Gamma_s and Γt\Gamma_t requires Ω(n)\Omega(n) morphing steps

    Upward Planar Morphs

    Full text link
    We prove that, given two topologically-equivalent upward planar straight-line drawings of an nn-vertex directed graph GG, there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O(1)O(1) morphing steps if GG is a reduced planar stst-graph, O(n)O(n) morphing steps if GG is a planar stst-graph, O(n)O(n) morphing steps if GG is a reduced upward planar graph, and O(n2)O(n^2) morphing steps if GG is a general upward planar graph. Further, we show that Ω(n)\Omega(n) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an nn-vertex path.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018) The current version is the extended on

    Morphing Contact Representations of Graphs

    Get PDF
    We consider the problem of morphing between contact representations of a plane graph. In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in the graph. In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type. We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property. Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs. We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs. As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the "top-most" triangle in both representations corresponds to the same vertex. This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set

    Tangent-ball techniques for shape processing

    Get PDF
    Shape processing defines a set of theoretical and algorithmic tools for creating, measuring and modifying digital representations of shapes.  Such tools are of paramount importance to many disciplines of computer graphics, including modeling, animation, visualization, and image processing.  Many applications of shape processing can be found in the entertainment and medical industries. In an attempt to improve upon many previous shape processing techniques, the present thesis explores the theoretical and algorithmic aspects of a difference measure, which involves fitting a ball (disk in 2D and sphere in 3D) so that it has at least one tangential contact with each shape and the ball interior is disjoint from both shapes. We propose a set of ball-based operators and discuss their properties, implementations, and applications.  We divide the group of ball-based operations into unary and binary as follows: Unary operators include: * Identifying details (sharp, salient features, constrictions) * Smoothing shapes by removing such details, replacing them by fillets and roundings * Segmentation (recognition, abstract modelization via centerline and radius variation) of tubular structures Binary operators include: * Measuring the local discrepancy between two shapes * Computing the average of two shapes * Computing point-to-point correspondence between two shapes * Computing circular trajectories between corresponding points that meet both shapes at right angles * Using these trajectories to support smooth morphing (inbetweening) * Using a curve morph to construct surfaces that interpolate between contours on consecutive slices The technical contributions of this thesis focus on the implementation of these tangent-ball operators and their usefulness in applications of shape processing. We show specific applications in the areas of animation and computer-aided medical diagnosis.  These algorithms are simple to implement, mathematically elegant, and fast to execute.Ph.D.Committee Chair: Jarek Rossignac; Committee Member: Greg Slabaugh; Committee Member: Greg Turk; Committee Member: Karen Liu; Committee Member: Maryann Simmon

    Morphing Parallel Graph Drawings

    Get PDF
    A pair of straight-line drawings of a graph is called parallel if, for every edge of the graph, the line segment that represents the edge in one drawing is parallel with the line segment that represents the edge in the other drawing. We study the problem of morphing between pairs of parallel planar drawings of a graph, keeping all intermediate drawings planar and parallel with the source and target drawings. We call such a morph a parallel morph. Parallel morphs have application to graph visualization. The problem of deciding whether two parallel drawings in the plane admit a parallel morph turns out to be NP-hard in general. However, for some restricted classes of graphs and drawings, we can efficiently decide parallel morphability. Our main positive result is that every pair of parallel simple orthogonal drawings in the plane admits a parallel morph. We give an efficient algorithm that computes such a morph. The number of steps required in a morph produced by our algorithm is linear in the complexity of the graph, where a step involves moving each vertex along a straight line at constant speed. We prove that this upper bound on the number of steps is within a constant factor of the worst-case lower bound. We explore the related problem of computing a parallel morph where edges are required to change length monotonically, i.e. to be either non-increasing or non-decreasing in length. Although parallel orthogonally-convex polygons always admit a monotone parallel morph, deciding morphability under these constraints is NP-hard, even for orthogonal polygons. We also begin a study of parallel morphing in higher dimensions. Parallel drawings of trees in any dimension always admit a parallel morph. This is not so for parallel drawings of cycles in 3-space, even if orthogonal. Similarly, not all pairs of parallel orthogonal polyhedra admit a parallel morph, even if they are topological spheres. In fact, deciding parallel morphability turns out to be PSPACE-hard for both parallel orthogonal polyhedra, and parallel orthogonal drawings in 3-space

    Facets of Planar Graph Drawing

    Get PDF
    This thesis makes a contribution to the field of Graph Drawing, with a focus on the planarity drawing convention. The following three problems are considered. (1) Ordered Level Planarity: We introduce and study the problem Ordered Level Planarity which asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a y-monotone curve. This can be interpreted as a variant of Level Planarity in which the vertices on each level appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum degree and the level-width, that is, the maximum number of vertices that share a level. Our study of Ordered Level Planarity is motivated by connections to several other graph drawing problems. With reductions from Ordered Level Planarity, we show NP-hardness of multiple problems whose complexity was previously open, and strengthen several previous hardness results. In particular, our reduction to Clustered Level Planarity generates instances with only two nontrivial clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati, and Roselli [2015]. We settle the complexity of the Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer, Schaefer, and Stefankovic [2013]. We also present a reduction to Manhattan Geodesic Planarity, showing that a previously [2009] claimed polynomial time algorithm is incorrect unless P=NP. (2) Two-page book embeddings of triconnected planar graphs: We show that every triconnected planar graph of maximum degree five is a subgraph of a Hamiltonian planar graph or, equivalently, it admits a two-page book embedding. In fact, our result is more general: we only require vertices of separating 3-cycles to have degree at most five, all other vertices may have arbitrary degree. This degree bound is tight: we describe a family of triconnected planar graphs that cannot be realized on two pages and where every vertex of a separating 3-cycle has degree at most six. Our results strengthen earlier work by Heath [1995] and by Bauernöppel [1987] and, independently, Bekos, Gronemann, and Raftopoulou [2016], who showed that planar graphs of maximum degree three and four, respectively, can always be realized on two pages. The proof is constructive and yields a quadratic time algorithm to realize the given graph on two pages. (3) Convexity-increasing morphs: We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal.Diese Arbeit behandelt drei unterschiedliche Problemstellungen aus der Disziplin des Graphenzeichnens (Graph Drawing). Bei jedem der behandelten Probleme ist die gesuchte Darstellung planar. (1) Ordered Level Planarity: Wir führen das Problem Ordered Level Planarity ein, bei dem es darum geht, einen Graph so zu zeichnen, dass jeder Knoten an einer vorgegebenen Position der Ebene platziert wird und die Kanten als y-monotone Kurven dargestellt werden. Dies kann als eine Variante von Level Planarity interpretiert werden, bei der die Knoten jedes Levels in einer vorgeschriebenen Reihenfolge platziert werden müssen. Wir klassifizieren die Eingaben bezüglich ihrer Komplexität in Abhängigkeit von sowohl dem Maximalgrad, als auch der maximalen Anzahl von Knoten, die demselben Level zugeordnet sind. Wir motivieren die Ergebnisse, indem wir Verbindungen zu einigen anderen Graph Drawing Problemen herleiten: Mittels Reduktionen von Ordered Level Planarity zeigen wir die NP-Schwere einiger Probleme, deren Komplexität bislang offen war. Insbesondere wird gezeigt, dass Clustered Level Planarity bereits für Instanzen mit zwei nichttrivialen Clustern NP-schwer ist, was eine Frage von Angelini, Da Lozzo, Di Battista, Frati und Roselli [2015] beantwortet. Wir zeigen die NP-Schwere des Bi-Monotonicity Problems und beantworten damit eine Frage von Fulek, Pelsmajer, Schaefer und Stefankovic [2013]. Außerdem wird eine Reduktion zu Manhattan Geodesic Planarity angegeben. Dies zeigt, dass ein bestehender [2009] Polynomialzeitalgorithmus für dieses Problem inkorrekt ist, es sei denn, dass P=NP ist. (2) Bucheinbettungen von dreifach zusammenhängenden planaren Graphen mit zwei Seiten: Wir zeigen, dass jeder dreifach zusammenhängende planare Graph mit Maximalgrad 5 Teilgraph eines Hamiltonischen planaren Graphen ist. Dies ist äquivalent dazu, dass ein solcher Graph eine Bucheinbettung auf zwei Seiten hat. Der Beweis ist konstruktiv und zeigt in der Tat sogar, dass es für die Realisierbarkeit nur notwendig ist, den Grad von Knoten separierender 3-Kreise zu beschränken - die übrigen Knoten können beliebig hohe Grade aufweisen. Dieses Ergebnis ist bestmöglich: Wenn die Gradschranke auf 6 abgeschwächt wird, gibt es Gegenbeispiele. Diese Ergebnisse verbessern Resultate von Heath [1995] und von Bauernöppel [1987] und, unabhängig davon, Bekos, Gronemann und Raftopoulou [2016], die gezeigt haben, dass planare Graphen mit Maximalgrad 3 beziehungsweise 4 auf zwei Seiten realisiert werden können. (3) Konvexitätssteigernde Deformationen: Wir zeigen, dass jede planare geradlinige Zeichnung eines intern dreifach zusammenhängenden planaren Graphen stetig zu einer solchen deformiert werden kann, in der jede Fläche ein konvexes Polygon ist. Dabei erhält die Deformation die Planarität und ist konvexitätssteigernd - sobald ein Winkel konvex ist, bleibt er konvex. Wir geben einen effizienten Algorithmus an, der eine solche Deformation berechnet, die aus einer asymptotisch optimalen Anzahl von Schritten besteht. In jedem Schritt bewegen sich entweder alle Knoten entlang horizontaler oder entlang vertikaler Geraden
    • …
    corecore