49 research outputs found

    Hazard-free clock synchronization

    Get PDF
    The growing complexity of microprocessors makes it infeasible to distribute a single clock source over the whole processor with a small clock skew. Hence, chips are split into multiple clock regions, each covered by a single clock source. This poses a problem for communication between these clock regions. Clock synchronization algorithms promise an advantage over state-of-the-art solutions, such as GALS systems. When clock regions are synchronous the communication latency improves significantly over handshake-based solutions. We focus on the implementation of clock synchronization algorithms. A major obstacle when implementing circuits on clock domain crossings are hazardous signals. We can formally define hazards by extending the Boolean logic by a third value u. In this thesis, we describe a theory for designing and analyzing hazard-free circuits. We develop strategies for hazard-free encoding and construction of hazard-free circuits from finite state machines. Furthermore, we discuss clock synchronization algorithms and a possible combination of them. In the end, we present two implementations of the GCS algorithm by Lenzen, Locher, and Wattenhofer (JACM 2010). We prove by rigorous analysis that the systems implement the algorithm. The theory described above is used to prove that our clock synchronization circuits are hazard-free (in the sense that they compute the most precise output possible). Simulation of our GCS system shows that it achieves a skew between neighboring clock regions that is smaller than a few inverter delays.Aufgrund der zunehmenden KomplexitĂ€t von Mikroprozessoren ist es unmöglich, mit einer einzigen Taktquelle den gesamten Prozessor ohne großen Versatz zu takten. Daher werden Chips in mehrere Regionen aufgeteilt, die jeweils von einer einzelnen Taktquelle abgedeckt werden. Dies stellt ein Problem fĂŒr die Kommunikation zwischen diesen Taktregionen dar. Algorithmen zur Taktsynchronisation bieten einen Vorteil gegenĂŒber aktuellen Lösungen, wie z.B. GALS-Systemen. Synchronisiert man die Taktregionen, so verbessert sich die Latenz der Kommunikation erheblich. In Schaltkreisen zwischen zwei Taktregionen können undefinierte Signale, sogenannte Hazards auftreten. Indem wir die boolesche Algebra um einen dritten Wert u erweitern, können wir diese Hazards formal definieren. In dieser Arbeit zeigen wir eine Methode zum Entwurf und zur Analyse von hazard-freien Schaltungen. Wir entwickeln Strategien fĂŒr Kodierungen die Hazards vermeiden und zur Konstruktion von hazard-freien Schaltungen. DarĂŒber hinaus stellen wir Algorithmen Taktsynchronisation vor und wie diese kombiniert werden können. Zum Schluss stellen wir zwei Implementierungen des GCS-Algorithmus von Lenzen, Locher und Wattenhofer (JACM 2010) vor. Oben genannte Mechanismen werden verwendet, um formal zu beweisen, dass diese Implementierungen korrekt sind. Die Implementierung hat keine Hazards, das heißt sie berechnet die bestmo ̈gliche Ausgabe. Anschließende Simulation der GCS Implementierung erzielt einen Versatz zwischen benachbarten Taktregionen, der kleiner als ein paar Gatter-Laufzeiten ist

    Karchmer-Wigderson Games for Hazard-Free Computation

    Get PDF
    We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games. Using this game, we prove hazard-free formula size and depth lower bounds that are provably stronger than those possible by the standard technique of transferring results from monotone complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and (3) a hazard-free formula with alternation depth 2 that has optimal depth. We then use our optimal constructions to obtain an improved universal worst-case hazard-free formula size upper bound. We see our results as a step towards establishing hazard-free computation as an independent missing link between Boolean complexity and monotone complexity

    Karchmer-Wigderson Games for Hazard-free Computation

    Full text link
    We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games. Using this game, we prove hazard-free formula size and depth lower bounds that are provably stronger than those possible by the standard technique of transferring results from monotone complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and (3) a hazard-free formula with alternation depth 22 that has optimal depth. We then use our optimal constructions to obtain an improved universal worst-case hazard-free formula size upper bound. We see our results as a significant step towards establishing hazard-free computation as an independent missing link between Boolean complexity and monotone complexity.Comment: 34 pages, To appear in ITCS 202

    Karchmer-Wigderson Games for Hazard-free Computation

    Get PDF
    We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games. Using this game, we prove hazard-free formula size and depth lower bounds that are provably stronger than those possible by the standard technique of transferring results from monotone complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and (3) a hazard-free formula with alternation depth 22 that has optimal depth. We then use our optimal constructions to obtain an improved universal worst-case hazard-free formula size upper bound. We see our results as a significant step towards establishing hazard-free computation as an independent missing link between Boolean complexity and monotone complexity

    Karchmer-Wigderson games for hazard-free computation

    Get PDF
    We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games. Using this game, we prove hazard-free formula size and depth lower bounds that are provably stronger than those possible by the standard technique of transferring results from monotone complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and (3) a hazard-free formula with alternation depth 2 that has optimal depth. We then use our optimal constructions to obtain an improved universal worst-case hazard-free formula size upper bound. We see our results as a significant step towards establishing hazard-free computation as an independent missing link between Boolean complexity and monotone complexity

    Metastability-containing circuits, parallel distance problems, and terrain guarding

    Get PDF
    We study three problems. The first is the phenomenon of metastability in digital circuits. This is a state of bistable storage elements, such as registers, that is neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and value-discrete model for metastability in digital circuits and show that it reflects relevant physical properties. Further, we propose the fundamentally new approach of using logical masking to perform meaningful computations despite the presence of metastable upsets and analyze what functions can be computed in our model. Additionally, we show that circuits with masking registers grow computationally more powerful with each available clock cycle. The second topic are parallel algorithms, based on an algebraic abstraction of the Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are distance approximations that obey the triangle inequality while at the same time achieving polylogarithmic depth and low work. Finally, we study the continuous Terrain Guarding Problem. We show that it has a rational discretization with a quadratic number of guard candidates, establish its membership in NP and the existence of a PTAS, and present an efficient implementation of a solver.Wir betrachten drei Probleme, zunĂ€chst das PhĂ€nomen von MetastabilitĂ€t in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen Speicherelementen, z.B. Registern, welcher weder logisch 0 noch 1 entspricht und die Abstraktion Boolescher Logik unterwandert. Wir prĂ€sentieren ein zeit- und wertdiskretes Modell fĂŒr MetastabilitĂ€t in digitalen Schaltungen und zeigen, dass es relevante physikalische Eigenschaften abbildet. Des Weiteren prĂ€sentieren wir den grundlegend neuen Ansatz, trotz auftretender MetastabilitĂ€t mit Hilfe von logischem Maskieren sinnvolle Berechnungen durchzufĂŒhren und bestimmen, welche Funktionen in unserem Modell berechenbar sind. DarĂŒber hinaus zeigen wir, dass durch Maskingregister in zusĂ€tzlichen Taktzyklen mehr Funktionen berechenbar werden. Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lösen. Der Fokus liegt auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarithmischer Tiefe und niedriger Arbeit. Abschließend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von WĂ€chterpositionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und prĂ€sentieren eine effiziente Implementierung, die es löst

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Development of the FPGA-based Raw Data Preprocessor for the TPC Readout Upgrade in ALICE

    Get PDF
    ALICE is one of the four major experiments at the Large Hadron Collider (LHC). It is the dedicated heavy-ion experiment and therefore primarily examines the Quark–Gluon Plasma. In order to prepare for the running conditions of 50 kHz lead-lead interactions at the LHC after the Long Shutdown 2 (2018–2021), an extensive upgrade program is carried out. The goal of the upgrade is a continuous readout of the TPC without the need of a trigger. It is essential to reduce the enormous data rate of 3.7 TB/s, generated by the upgraded detector, already during the data taking by a factor of about 60. Otherwise the data volume would exceed the expected available bandwidth and storage capabilities. In this thesis, an online Cluster Finder (CF) was developed and implemented for FPGAs which processes the whole data volume in real-time during the read out. This is the first step in the data reduction sequence which achieves already a factor of about 5 by keeping only physically relevant information and making use of a better suited data format. In addition to the CF, also the whole data preparation chain was designed and implemented to decode the input data stream, to resort the individual channels to allow for cluster finding and to correct the detector effects in the input signals. All modules which were implemented were extensively simulated to verify their proper functionality. With this, the complete processing chain within the FPGAs was prepared and validated

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore