92 research outputs found

    Streamlining humanitarian relief operations: the case of United Nations Peace Keeping Operations

    Get PDF
    This paper discusses supply chain and logistics issues that arise in the operations of the Peacekeeping base of the United Nations in Brindisi. First, a conceptual introduction of current lean-agile and risk debates in the supply chain literature is proposed, followed by a description of the operational activities of United Nations base at Brindisi. Then, the Peacekeeping operations are put in the context of the lean-agile debate, and possible logistics efficiency improvements are proposed

    Preventive replacement for belligerent systems

    Get PDF
    A mortar is commonly used as an indirect firing weapon to support close fires with a variety of ammunition. There are mortar weapons with various shells. Each type of shells fired by mortars does damage to a weapon when the total damage on a mortar weapon reaches the tolerance limit, the mortar weapon either fails or explodes, leading to a compulsory replacement which is costly. In order to maintain the mortar weapons and archers in wars, a research was conducted to find the best number of mortar shells that will be fired until a preventive replacement for mortar weapons is implemented

    An enhanced approximation mathematical model inventorying items in a multi-echelon system under a continuous review policy with probabilistic demand and lead-time

    Get PDF
    An inventory system attempts to balance between overstock and understock to reduce the total cost and achieve customer demand in a timely manner. The inventory system is like a hidden entity in a supply chain, where a large complete network synchronizes a series of interrelated processes for a manufacturer, in order to transform raw materials into final products and distribute them to customers. The optimality of inventory and allocation policies in a supply chain for a cement industry is still unknown for many types of multi-echelon inventory systems. In multi-echelon networks, complexity exists when the inventory issues appear in multiple tiers and whose performances are significantly affected by the demand and lead-time. Hence, the objective of this research is to develop an enhanced approximation mathematical model in a multi-echelon inventory system under a continuous review policy subject to probabilistic demand and lead-time. The probability distribution function of demand during lead-time is established by developing a new Simulation Model of Demand During Lead-Time (SMDDL) using simulation procedures. The model is able to forecast future demand and demand during lead-time. The obtained demand during lead-time is used to develop a Serial Multi-echelon Inventory (SMEI) model by deriving the inventory cost function to compute performance measures of the cement inventory system. Based on the performance measures, a modified distribution multi-echelon inventory (DMEI) model with the First Come First Serve (FCFS) rule (DMEI-FCFS) is derived to determine the best expected waiting time and expected number of retailers in the system based on a mean arrival rate and a mean service rate. This research established five new distribution functions for the demand during lead-time. The distribution functions improve the performance measures, which contribute in reducing the expected waiting time in the system. Overall, the approximation model provides accurate time span to overcome shortage of cement inventory, which in turn fulfil customer satisfaction

    Modeling Multilevel Supply Chain Systems to Optimize Order Quantities and Order Points Through Mathematical Models, Discrete Event simulation and Physical Simulations

    Get PDF
    Managing supply chains in today\u27s distributed manufacturing environment has become more complex. To remain competitive in today\u27s global marketplace, organizations must streamline their supply chains. The practice of coordinating the design, procurement, flow of goods, services, information and finances, from raw material flows to parts supplier to manufacturer to distributor to retailer and finally to consumer requires synchronized planning and execution. Efficient and effective supply chain management assists an organization in getting the right goods and services to the place needed at the right time, in the proper quantity and at acceptable cost. Managing this process involves developing and overseeing relationships with suppliers and customers, controlling inventory, and forecasting demand, all requiring constant feedback from every link in the chain. Base Stock Model and (Q, r) models are applied to three tier single-product supply chain to calculate order quantities and reorder point at various locations within the supply chain. Two physical simulations are designed to study the above supply chain. One of these simulations is specifically designed to validate the results from Base Stock model. A computer based discrete event simulation model is created to study the three tier supply chain and to validate the results of the Base Stock model. Results from these mathematical models, physical simulation models and computer based simulation model are compared. In addition, the physical simulation model studies the impact of lean implementation through various performance metrics and the results demonstrate the power of physical simulations as a pedagogical tool for training. Contribution of present work in understanding the supply chain integration is discussed and future research topics are presented

    Achieving Breakthrough Service Delivery Through Dynamic Asset Deployment Strategies

    Get PDF
    Many firms have shifted their focus from their products to their customers and the value derived from owning and using the products. They see after-sales service as an important source of revenue and profit, customer acquisition and retention, and competitive differentiation. However, they also find it challenging to manage their service-supply chain. Service organizations must position and manage service-supply-chain resources optimally to support the delivery of after-sales service. They must also develop capabilities to respond rapidly to the demand for service in a cost-effective manner. To succeed in implementing a service-centric strategy, firms must determine what items in their products’ service bill-of-material hierarchy should be deployed throughout their geographical hierarchy of service support locations. They must make these complex and interrelated decisions in anticipation of service demand, which is uncertain. Firms must also be flexible and should understand the mechanisms in a service-supply chain needed to fulfill customers’ demands for service and the resulting demands for support assets and capacities. Dynamic asset deployment (DAD), a collection of management policies that promote this flexibility, can be used to develop the capabilities needed to effectively and profitably deliver services. These policies require a real-options-based optimization approach to decision making

    Capacity flexibility of a maintenance service provider in specialized and commoditized system environments

    Get PDF
    In the last decades, after-sales services have become increasingly important since service is a source of differentiation as well as a lucrative business opportunity due to the substantial amount of revenue that can be generated from the products in use throughout their life cycle. Following this trend, many after-sales service providers have emerged in the market or evolved as semi-autonomous units within the OEM (Original Equipment Manufacturer) companies. In this thesis, we focus on the maintenance aspect of after-sales services. We assume that a maintenance service provider (MSP) is running a repair shop in an environment with numerous operating systems that are prone to failure. The MSP is responsible for keeping all systems in an environment up and working. We mainly focus on two types of environments: 1) Specialized System Environment 2) Commoditized System Environment. The systems in the first environment are highly customized. They are designed and built specifically following the owners’ precise requirements. Defense systems, specific lithography systems, mission aircrafts or other advanced/complex, engineer-to-order capital goods are examples of such specialized systems. Due to the diversity of owners’ requirements, each system develops many unique characteristics, which make it hard, if not impossible, to find a substitute for the system, in the market as a whole. In the second environment, the systems are more generic in terms of their functionality. Trucks, cranes, printers, copy machines, forklifts, computer systems, cooling towers, some common medical devices (i.e. anesthesia, x-ray and ultrasound machines, etc…), power systems are examples of such more commoditized systems. Due to the more generic features of the owners’ requirements, it is easier to find a substitute for a system in the market, with more or less the same functionality, for short-term hiring purposes. Upon a system breakdown, the defective unit (system/subsystem) is sent to the repair shop. MSP is responsible for the repair and also liable for the costs related to the down time. In order to alleviate the down-time costs, there are chiefly two different downtime service strategies that the MSP can follow, depending on the environment the repair shop is operating in. In the specialized system environment, the MSP holds a spare unit inventory for the critical subsystem that causes most of the failures. The downtime service related decision in such a case would be the inventory level of the critical spare subsystems. On the other hand, in the commoditized system environment, rather than keeping a spare unit inventory, the MSP hires a substitute system from an agreed rental store/3rd party supplier. The downtime service related decision in this case is the hiring duration. Next to the above downtime service related decisions, repair shop’s capacity level is the other primary determinant of the systems’ uptime/availability. Since maintenance is a labor-intensive industry, the capacity costs constitute a large portion of the total costs. Increasing pressure on profitability and the growing role of External Labor Supplier Agencies motivate service provider firms to scrutinize the prospects and possibilities of capacity flexibility by using contingent workforce. For various reasons, flexible capacity practices in real life are often periodic, and the period length is both a decision parameter and a metric for flexibility. A shorter period length implies more frequent adapting possibilities and a better tailoring of the capacity. On the other hand, the flexible capacity cost per unit time is higher for shorter period lengths due to the compensating wage differentials, which models the relation between the wage rate and the unpleasantness, risk or other undesirable attributes of the job. Certainly, short period length in this context is an undesirable attribute for the flexible capacity resource, as it mandates the resource to switch tasks and to be ready/available more frequently, without the guarantee that s/he will be actually employed. Therefore, we propose several empirically testable functional forms for the cost rate of a flexible capacity unit, which are decreasing with the period length and, in the limit, approaches to the cost rate of a permanent capacity unit from above. In the light of discussions above, we investigate three different capacity modes in this dissertation: ¿ Fixed Capacity Mode: In this mode, all of the capacity is permanent and ready for use in the repair shop. This mode serves as a reference point in order to assess the benefits of other flexible capacity modes. The relevant capacity decision in this mode is the single capacity level of the repair shop. ¿ Periodic Two-Level Capacity Mode: In this mode, we assume two levels of repair shop capacity: permanent and permanent plus contingent capacity levels. The permanent capacity is always available in the system, whereas the deployment of the contingent capacity is decided at the start of each period based on the number of units waiting to be repaired in the shop. The relevant capacity decisions in this mode are the permanent and contingent capacity levels, the period length and the states (in terms of number of defective units waiting) where the contingent capacity is deployed. ¿ Periodic Capacity Sell-Back Mode: In this mode, the failed units are sent to the repair shop at regular intervals in time. Due to this admission structure, when the repair of all the defective units in the repair shop are completed in a period, it is known that no new defective parts will arrive to the shop at least until the start of the next period. This certainty in idle times allows for a contract, where the repair shop capacity is sold at a reduced price to the capacity agency where it is assigned to other tasks until the start of the next period. The original cost of the multi-skilled repair shop capacity per time unit is higher than the permanent capacity cost that is mentioned in previous modes due to the compensation factors such as additional skills, frequent task switching and transportation/transaction costs. Similar to the previous capacity mode, the compensation decreases with the length of the period length. The relevant capacity decisions in this mode are the capacity level and the period length. The primary goal of this thesis is to develop quantitative models and methods for taking optimal capacity decisions for the repair shop in the presence of the capacity modes described above and to integrate these decisions with the other downtime service decisions of the MSP for two different types of system environments (specialized vs. commoditized). After the introduction of the problem, concepts and literature review are given in Chapters 1. In Chapter 2, we focus on the use of capacity flexibility in the repair operations of the MSP in specialized system environment. The capacity related decisions are integrated with the decision on the stock level of the spare unit inventory for all three capacity modes. In Chapter 3 we investigate the same three capacity modes in a (partially) commoditized system environment, where hiring a substitute system for a pre-determined, uniform duration becomes the conventional method upon a failure. In this chapter the decision on the hiring duration is integrated with the other capacity related decisions. Then we provide some preliminary analysis and give the early results on the hybrid strategy where both "keeping stock" and "hire substitute" strategies are followed. Finally in Chapter 4, we summarize our results, give the conclusion and discuss the topics covered in this thesis with a brief exploration on the future research. The numerical results reveal that, in both specialized and commoditized system environments, substantial cost savings (up to 70%) can be achieved under periodic two-level capacity and periodic capacity sell-back modes compared to the fixed capacity mode. However, both period length and the compensation scheme of the capacity resources greatly influence the savings, even in some cost instances, flexible modes (periodic two-level and capacity sell-back) become less economical compared to the fixed capacity mode. Cost parameter instances in which each of the 3 capacity modes becomes cost-optimal, the characteristics of the cost savings and the sensitivity analysis of cost/policy parameters are investigated in both of the system environments in Chapter 2 and Chapter 3, respectively. In the commoditized system environment, under the same cost parameter settings, the hiring substitute from an external supplier for a fixed duration causes a better, more refined and certain control compared to keeping an inventory. Hybrid strategy, in which a substitute is hired after a stock-out instance, is applicable in commoditized as well as commoditizing (previously specialized systems that are in the ongoing commoditization process) system environments. Hybrid strategy outperforms both "only keeping stock" and "only hiring substitute" alternatives; however, in the commoditized system environment, a MSP may still have a proclivity to employ the "hiring substitute" strategy only, because it does not require any initial investment, which is convenient for SMEs. These issues will be explicated further in Chapter 5. We believe that the framework, the design and analysis of the problems addressed as well as the results and the insights obtained in this dissertation can help and motivate other researchers/practitioners to further investigate the cost saving prospects from capacity flexibility in maintenance service operations. We also anticipate that the commoditization framework described in this thesis will be increasingly useful in the future, since the commoditization of the parts/machines will be much more widespread, pushing all the after-sales service providers to compete on the efficiency of their operatio

    Theory and Practice of Supply Chain Synchronization

    Get PDF
    In this dissertation, we develop strategies to synchronize component procurement in assemble-to-order (ATO) production and overhaul operations. We focus on the high-tech and mass customization industries which are not only considered to be very important to create or keep U.S. manufacturing jobs, but also suffer most from component inventory burden. In the second chapter, we address the deterministic joint replenishment inventory problem with batch size constraints (JRPB). We characterize system regeneration points, derive a closed-form expression of the average product inventory, and formulate the problem of finding the optimal joint reorder interval to minimize inventory and ordering costs per unit of time. Thereafter, we discuss exact solution approaches and the case of variable reorder intervals. Computational examples demonstrate the power of our methodology. In the third chapter, we incorporate stochastic demand to the JRPB. We propose a joint part replenishment policy that balances inventory and ordering costs while providing a desired service level. A case study and guided computational experiments show the magnitudes of savings that are possible using our methodology. In the fourth chapter, we show how lack of synchronization in assembly systems with long and highly variable component supply lead times can rapidly deteriorate system performance. We develop a full synchronization strategy through time buffering of component orders, which not only guarantees meeting planned production dates but also drastically reduces inventory holding costs. A case study has been carried out to prove the practical relevance, assess potential risks, and evaluate phased implementation policies. The fifth chapter explores the use of condition information from a large number of distributed working units in the field to improve the management of the inventory of spare parts required to maintain those units. Synchronization is again paramount here since spare part inventory needs to adapt to the condition of the engine fleet. All needed parts must be available to complete the overhaul of a unit. We develop a complex simulation environment to assess the performance of different inventory policies and the value of health monitoring. The sixth chapter concludes this dissertation and outlines future research plans as well as opportunities
    • …
    corecore