3,277 research outputs found

    Automated Discharging Arguments for Density Problems in Grids

    Full text link
    Discharging arguments demonstrate a connection between local structure and global averages. This makes it an effective tool for proving lower bounds on the density of special sets in infinite grids. However, the minimum density of an identifying code in the hexagonal grid remains open, with an upper bound of 37≈0.428571\frac{3}{7} \approx 0.428571 and a lower bound of 512≈0.416666\frac{5}{12}\approx 0.416666. We present a new, experimental framework for producing discharging arguments using an algorithm. This algorithm replaces the lengthy case analysis of human-written discharging arguments with a linear program that produces the best possible lower bound using the specified set of discharging rules. We use this framework to present a lower bound of 2355≈0.418181\frac{23}{55} \approx 0.418181 on the density of an identifying code in the hexagonal grid, and also find several sharp lower bounds for variations on identifying codes in the hexagonal, square, and triangular grids.Comment: This is an extended abstract, with 10 pages, 2 appendices, 5 tables, and 2 figure

    An improved lower bound for (1,<=2)-identifying codes in the king grid

    Full text link
    We call a subset CC of vertices of a graph GG a (1,≤ℓ)(1,\leq \ell)-identifying code if for all subsets XX of vertices with size at most ℓ\ell, the sets {c∈C∣∃u∈X,d(u,c)≤1}\{c\in C |\exists u \in X, d(u,c)\leq 1\} are distinct. The concept of identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been studied in various grids. In particular, it has been shown that there exists a (1,≤2)(1,\leq 2)-identifying code in the king grid with density 3/7 and that there are no such identifying codes with density smaller than 5/12. Using a suitable frame and a discharging procedure, we improve the lower bound by showing that any (1,≤2)(1,\leq 2)-identifying code of the king grid has density at least 47/111

    Optimal local identifying and local locating-dominating codes

    Full text link
    We introduce two new classes of covering codes in graphs for every positive integer rr. These new codes are called local rr-identifying and local rr-locating-dominating codes and they are derived from rr-identifying and rr-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small nn optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities

    On lower bounds of various dominating codes for locating vertices in cubic graphs

    Get PDF
    Self-identifying codes, self-locating dominating codes and solid-locating dominating codes are three subsets of vertices of a graph G to locate vertices. The optimal size of them is denoted by γSID (G),γSLD (G) and γDLD (G). In the master thesis, we mainly discuss their lower bound problem in families of graphs. In the first section, we briefly describe the background of the study and some related questions. In the second, third and fourth section, we show some basic definitions, concepts and examples related to self-identifying codes (SID), self-locating dominating codes (SLD) and solid-locating dominating codes (DLD) in rook’s graphs. In the fifth section, we first introduce some known results of lower bounds of open-locating dominating codes in cubic graphs and then in the sixth section we present some new results about the lower bounds of self-identifying codes, self-locating dominating codes and solid-locating dominating codes in cubic graphs

    On Vertex Identifying Codes For Infinite Lattices

    Get PDF
    PhD Thesis--A compilation of the papers: "Lower Bounds for Identifying Codes in Some Infinite Grids", "Improved Bounds for r-identifying Codes of the Hex Grid", and "Vertex Identifying Codes for the n-dimensional Lattics" along with some other resultsComment: 91p

    On identifying codes that are robust against edge changes

    Get PDF
    AbstractAssume that G=(V, E) is an undirected graph, and C⊆V. For every v∈V, denote Ir(G; v)={u∈C: d(u,v)≤r}, where d(u,v) denotes the number of edges on any shortest path from u to v in G. If all the sets Ir(G; v) for v∈V are pairwise different, and none of them is the empty set, the code C is called r-identifying. The motivation for identifying codes comes, for instance, from finding faulty processors in multiprocessor systems or from location detection in emergency sensor networks. The underlying architecture is modelled by a graph. We study various types of identifying codes that are robust against six natural changes in the graph; known or unknown edge deletions, additions or both. Our focus is on the radius r=1. We show that in the infinite square grid the optimal density of a 1-identifying code that is robust against one unknown edge deletion is 1/2 and the optimal density of a 1-identifying code that is robust against one unknown edge addition equals 3/4 in the infinite hexagonal mesh. Moreover, although it is shown that all six problems are in general different, we prove that in the binary hypercube there are cases where five of the six problems coincide

    Finding codes on infinite grids automatically

    Full text link
    We apply automata theory and Karp's minimum mean weight cycle algorithm to minimum density problems in coding theory. Using this method, we find the new upper bound 53/126≈0.420653/126 \approx 0.4206 for the minimum density of an identifying code on the infinite hexagonal grid, down from the previous record of 3/7≈0.42863/7 \approx 0.4286.Comment: 18 pages, 5 figure

    Multiple Description Vector Quantization with Lattice Codebooks: Design and Analysis

    Get PDF
    The problem of designing a multiple description vector quantizer with lattice codebook Lambda is considered. A general solution is given to a labeling problem which plays a crucial role in the design of such quantizers. Numerical performance results are obtained for quantizers based on the lattices A_2 and Z^i, i=1,2,4,8, that make use of this labeling algorithm. The high-rate squared-error distortions for this family of L-dimensional vector quantizers are then analyzed for a memoryless source with probability density function p and differential entropy h(p) < infty. For any a in (0,1) and rate pair (R,R), it is shown that the two-channel distortion d_0 and the channel 1 (or channel 2) distortions d_s satisfy lim_{R -> infty} d_0 2^(2R(1+a)) = (1/4) G(Lambda) 2^{2h(p)} and lim_{R -> infty} d_s 2^(2R(1-a)) = G(S_L) 2^2h(p), where G(Lambda) is the normalized second moment of a Voronoi cell of the lattice Lambda and G(S_L) is the normalized second moment of a sphere in L dimensions.Comment: 46 pages, 14 figure
    • …
    corecore