20,223 research outputs found

    Optimal Location of FACTS Device on Enhancing System Security

    Get PDF
    In this paper  a Unified Power Flow Controller (UPFC) is a FACTS device that can be control the power flow in transmission line by injecting active and reactive in voltage components in series with the lines.The proposed methodologies are based on the use of line loading security Performance Index (sensitivity factors have been suggested in this paper for optimal placement of UPFC.This methods are computationally efficient PI sensitivity   factors have been obtained with respect to change in two of the UPFC parameters viz., magnitude and phase angle of the injected voltage in the lines. The proposed methodologies are tested validated for locating UPFC in IEEE 30-bus system.ACO based Optimal Power Flow (OPF) formulation has been suggested to determine the optimal PI values, after placement of UPFC based on the proposed sensitivity factors. Both AC and DC power flow approximations have been used to define the sensitivity factors and their results have been compared on IEEE 30-bus system.DOI:http://dx.doi.org/10.11591/ijece.v2i3.25

    Enhancement of Voltage Stability with Unified Power Flow Controller Considering Loadability Analysis

    Get PDF
    Voltage stability is an important issue in planning and operation of electric power system during both normal and under contingency conditions. This paper presents line voltage stability index (LVSI) for transmission lines voltage stability assessment and evaluation. The system stability under maximum loading and contingency conditions are analyzed using optimal power flow analysis. FACTS device is considered for a real-time control and a dynamic reactive power compensation of the system. Voltage source-based power injection model of unified power flow controller (UPFC) is used for the minimization of voltage deviation and losses on the network. Optimal location and sizing of UPFC is carried out using grey wolf optimization (GWO) technique in order to identify an optimal location where the FACTS device will be installed. UPFC device has proven to increase the line transmittable power, controls the voltage magnitude at the buses as well as enhancing the stability and security of the power system. The various conditions and scenarios used to test the efficacy of this model for system stability and security under contingency conditions are demonstrated on standard IEEE 14-bus test system

    Improvement the voltage stability margin of Iraqi power system using the optimal values of FACTS devices

    Get PDF
    The detection of potential voltage collapse in power systems is essential to maintain the voltage stability in heavy load demand. This paper proposes a method to detect weak buses in power systems using two stability indices: the voltage stability margin factor (dS/dY) and the voltage collapse prediction index (VCPI). Hence, the paper aims to improve the voltage stability of Iraqi transmission grid by allocating FACTS devices in the optimal locations and optimal sizes. Two types of FACTS are used in this paper which are Thyristor controlled series compensator (TCSC) and static var compensator (SVC). The objective function of the problem is fitted using particle swarm optimization (PSO). The proposed method is verified using simulation test on Diyala-132 kV network which is a part of the Iraqi power system. The results observed that improvement the voltage stability margin, the voltage profile of Diyala-132 kV is increased and the power losses is decreased

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system’s performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    corecore