45 research outputs found

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-θ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations

    Full text link
    Consider a weighted graph G where vertices are points in the plane and edges are line segments. The weight of each edge is the Euclidean distance between its two endpoints. A routing algorithm on G has a competitive ratio of c if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. If the length of the path is at most c times the Euclidean distance from s to t, we say that the routing algorithm on G has a routing ratio of c.We present an online routing algorithm on the Delaunay triangulation with competitive and routing ratios of 5.90. This improves upon the best known algorithm that has competitive and routing ratio 15.48. The algorithm is a generalization of the deterministic 1-local routing algorithm by Chew on the L1-Delaunay triangulation. When a message follows the routing path produced by our algorithm, its header need only contain the coordinates of s and t. This is an improvement over the currently known competitive routing algorithms on the Delaunay triangulation, for which the header of a message must additionally contain partial sums of distances along the routing path.We also show that the routing ratio of any deterministic k-local algorithm is at least 1.70 for the Delaunay triangulation and 2.70 for the L1-Delaunay triangulation. In the case of the L1-Delaunay triangulation, this implies that even though there exists a path between two points x and y whose length is at most 2.61|[xy]| (where |[xy]| denotes the length of the line segment [xy]), it is not always possible to route a message along a path of length less than 2.70|[xy]|. From these bounds on the routing ratio, we derive lower bounds on the competitive ratio of 1.23 for Delaunay triangulations and 1.12 for L1-Delaunay triangulations

    The Stretch Factor of L1L_1- and LL_\infty-Delaunay Triangulations

    Get PDF
    In this paper we determine the stretch factor of the L1L_1-Delaunay and LL_\infty-Delaunay triangulations, and we show that this stretch is 4+222.61\sqrt{4+2\sqrt{2}} \approx 2.61. Between any two points x,yx,y of such triangulations, we construct a path whose length is no more than 4+22\sqrt{4+2\sqrt{2}} times the Euclidean distance between xx and yy, and this bound is best possible. This definitively improves the 25-year old bound of 10\sqrt{10} by Chew (SoCG '86). To the best of our knowledge, this is the first time the stretch factor of the well-studied LpL_p-Delaunay triangulations, for any real p1p\ge 1, is determined exactly

    The Tight Spanning Ratio of the Rectangle Delaunay Triangulation

    Full text link
    Spanner construction is a well-studied problem and Delaunay triangulations are among the most popular spanners. Tight bounds are known if the Delaunay triangulation is constructed using an equilateral triangle, a square, or a regular hexagon. However, all other shapes have remained elusive. In this paper we extend the restricted class of spanners for which tight bounds are known. We prove that Delaunay triangulations constructed using rectangles with aspect ratio \A have spanning ratio at most \sqrt{2} \sqrt{1+\A^2 + \A \sqrt{\A^2 + 1}}, which matches the known lower bound

    The Price of Order

    Full text link
    We present tight bounds on the spanning ratio of a large family of ordered θ\theta-graphs. A θ\theta-graph partitions the plane around each vertex into mm disjoint cones, each having aperture θ=2π/m\theta = 2 \pi/m. An ordered θ\theta-graph is constructed by inserting the vertices one by one and connecting each vertex to the closest previously-inserted vertex in each cone. We show that for any integer k1k \geq 1, ordered θ\theta-graphs with 4k+44k + 4 cones have a tight spanning ratio of 1+2sin(θ/2)/(cos(θ/2)sin(θ/2))1 + 2 \sin(\theta/2) / (\cos(\theta/2) - \sin(\theta/2)). We also show that for any integer k2k \geq 2, ordered θ\theta-graphs with 4k+24k + 2 cones have a tight spanning ratio of 1/(12sin(θ/2))1 / (1 - 2 \sin(\theta/2)). We provide lower bounds for ordered θ\theta-graphs with 4k+34k + 3 and 4k+54k + 5 cones. For ordered θ\theta-graphs with 4k+24k + 2 and 4k+54k + 5 cones these lower bounds are strictly greater than the worst case spanning ratios of their unordered counterparts. These are the first results showing that ordered θ\theta-graphs have worse spanning ratios than unordered θ\theta-graphs. Finally, we show that, unlike their unordered counterparts, the ordered θ\theta-graphs with 4, 5, and 6 cones are not spanners

    Expected Complexity of Routing in Θ6\Theta_6 and Half-Θ6\Theta_6 Graphs

    Get PDF
    We study online routing algorithms on the Θ6-graph and the half-Θ6-graph (which is equivalent to a variant of the Delaunay triangulation). Given a source vertex s and a target vertex t in the Θ6-graph (resp. half-Θ6-graph), there exists a deterministic online routing algorithm that finds a path from s to t whose length is at most 2 st (resp. 2.89 st) which is optimal in the worst case [Bose et al., siam J. on Computing, 44(6)]. We propose alternative, slightly simpler routing algorithms that are optimal in the worst case and for which we provide an analysis of the average routing ratio for the Θ6-graph and half-Θ6-graph defined on a Poisson point process. For the Θ6-graph, our online routing algorithm has an expected routing ratio of 1.161 (when s and t random) and a maximum expected routing ratio of 1.22 (maximum for fixed s and t where all other points are random), much better than the worst-case routing ratio of 2. For the half-Θ6-graph, our memoryless online routing algorithm has an expected routing ratio of 1.43 and a maximum expected routing ratio of 1.58. Our online routing algorithm that uses a constant amount of additional memory has an expected routing ratio of 1.34 and a maximum expected routing ratio of 1.40. The additional memory is only used to remember the coordinates of the starting point of the route. Both of these algorithms have an expected routing ratio that is much better than their worst-case routing ratio of 2.89
    corecore