25 research outputs found

    QoS-aware and Policy Based Mobile Data O oading

    Get PDF

    Datacenter Design for Future Cloud Radio Access Network.

    Full text link
    Cloud radio access network (C-RAN), an emerging cloud service that combines the traditional radio access network (RAN) with cloud computing technology, has been proposed as a solution to handle the growing energy consumption and cost of the traditional RAN. Through aggregating baseband units (BBUs) in a centralized cloud datacenter, C-RAN reduces energy and cost, and improves wireless throughput and quality of service. However, designing a datacenter for C-RAN has not yet been studied. In this dissertation, I investigate how a datacenter for C-RAN BBUs should be built on commodity servers. I first design WiBench, an open-source benchmark suite containing the key signal processing kernels of many mainstream wireless protocols, and study its characteristics. The characterization study shows that there is abundant data level parallelism (DLP) and thread level parallelism (TLP). Based on this result, I then develop high performance software implementations of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addition, I generalize the GPU parallelization techniques of the Turbo decoder to the trellis algorithms, an important family of algorithms that are widely used in data compression and channel coding. Then I evaluate the performance of commodity CPU servers and GPU servers. The study shows that the datacenter with GPU servers can meet the LTE standard throughput with 4× to 16× fewer machines than with CPU servers. A further energy and cost analysis show that GPU servers can save on average 13× more energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using GPUs as a server platform. Next I study resource management techniques to handle the temporal and spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing” power management that combines powering-off GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a practical traffic model, this technique saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial traffic imbalance, I propose three workload distribution techniques to improve load balance and throughput. Among all three techniques, pipelining packets has the most throughput improvement at 10% and 16% for balanced and unbalanced loads, respectively.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120825/1/qizheng_1.pd

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Enhancing spectrum utilization through cooperation and cognition in wireless systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections."February 2013." Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 201-217).We have seen a proliferation of wireless technologies and devices in recent years. The resulting explosion of wireless demand has put immense pressure on available spectrum. Improving spectrum utilization is therefore necessary to enable wireless networks to keep up with burgeoning demand. This dissertation presents a cognitive and cooperative wireless architecture that significantly enhances spectrum utilization. Specifically, it introduces four new systems that embody a cross-layer design for cognition and cooperation. The first system, SWIFT, is a cognitive cross technology solution that enables wideband devices to exploit higher layer network semantics to adaptively sense which portions of the spectrum are occupied by unknown narrowband devices, and weave the remaining unoccupied spectrum bands into a single high-throughput wideband link. Second, FARA is a cooperative system that enables multi-channel wireless solutions like 802.11 to dynamically use all available channels for all devices in a performance-aware manner by using information from the physical layer and allocating to each link the frequency bands that show the highest performance for that link. SourceSync, the third system, enables wireless nodes in last-hop and wireless mesh networks to cooperatively transmit synchronously in order to exploit channel diversity and increase reliability. Finally, MegaMIMO enables wireless throughput to scale linearly with the number of transmitters by enabling multiple wireless transmitters to transmit simultaneously in the same frequency bands to multiple wireless receivers without interfering with each other. The systems in this dissertation demonstrate the practicality of cognitive and cooperative wireless systems to enable spectrum sharing. Further, as part of these systems, we design several novel primitives - adaptive spectrum sensing, time alignment, frequency synchronization, and distributed phase-coherent transmission, that can serve as fundamental building blocks for wireless cognition and cooperation. Finally, we have implemented all four systems described in this dissertation, and evaluated them in wireless testbeds, demonstrating large gains in practice.by Hariharan Shankar Rahul.Ph.D

    On the design of a cost-efficient resource management framework for low latency applications

    Get PDF
    The ability to offer low latency communications is one of the critical design requirements for the upcoming 5G era. The current practice for achieving low latency is to overprovision network resources (e.g., bandwidth and computing resources). However, this approach is not cost-efficient, and cannot be applied in large-scale. To solve this, more cost-efficient resource management is required to dynamically and efficiently exploit network resources to guarantee low latencies. The advent of network virtualization provides novel opportunities in achieving cost-efficient low latency communications. It decouples network resources from physical machines through virtualization, and groups resources in the form of virtual machines (VMs). By doing so, network resources can be flexibly increased at any network locations through VM auto-scaling to alleviate network delays due to lack of resources. At the same time, the operational cost can be largely reduced by shutting down low-utilized VMs (e.g., energy saving). Also, network virtualization enables the emerging concept of mobile edge-computing, whereby VMs can be utilized to host low latency applications at the network edge to shorten communication latency. Despite these advantages provided by virtualization, a key challenge is the optimal resource management of different physical and virtual resources for low latency communications. This thesis addresses the challenge by deploying a novel cost-efficient resource management framework that aims to solve the cost-efficient design of 1) low latency communication infrastructures; 2) dynamic resource management for low latency applications; and 3) fault-tolerant resource management. Compared to the current practices, the proposed framework achieves 80% of deployment cost reduction for the design of low latency communication infrastructures; continuously saves up to 33% of operational cost through dynamic resource management while always achieving low latencies; and succeeds in providing fault tolerance to low latency communications with a guaranteed operational cost

    Bandwidth reservation in mobile ad hoc networks for providing QoS : adaptation for voice support

    Get PDF
    Le support de qualité de service (QoS) dans les réseaux MANETs (Mobile Ad-Hoc NETworks) a attiré une grande attention ces dernières années. Bien que beaucoup de travaux de recherche ont été consacré pour offrir la QoS dans les réseaux filaires et cellulaires, les solutions de QoS pour le support du trafic temps réel dans les MANET reste l'un des domaines de recherche les plus difficiles et les moins explorés. En fait, les applications temps réel telles que la voix et la vidéo ne pourrait pas fonctionner correctement dans les MANET sans l'utilisation d'un protocole de contrôle d'accès au support (MAC) orienté QoS. En effet, les trafics temps réel demandent des exigences strictes en termes de délai de transmission et de taux de perte de paquets qui peuvent être remplies uniquement si la sous-couche MAC fournit un délai d'accès au canal borné, et un faible taux de collision. Le but de cette thèse est la proposition et l'analyse d'un protocole MAC basé sur la réservation pour garantir la QoS dans les MANETs. Tout d'abord, nous étudions un problème majeur dans la réservation de ressources dans les MANETs qui est la cohérence des réservations. Notre analyse des protocoles de réservation existant pour les MANETs révèle que de nombreux conflits de réservations entre les nœuds voisins se produisent pendant la phase d'établissement de réservation. Ces conflits, qui sont principalement dues à la collision des messages de contrôle de réservation, ont un impact important sur les performances du protocole de réservation, et conduisent à un taux de collision et de perte de paquet importants pendant la durée de vie de la connexion, ce qui n'est pas acceptable pour les trafics temps réels. Nous proposons un nouveau protocole MAC basé sur la réservation qui résout ces conflits. Le principe de notre protocole est d'établir une meilleure coordination entre les nœuds voisins afin d'assurer la cohérence des réservations. Ainsi, avant de considérer qu'une réservation est réussite, le protocole s'assure que chaque message de contrôle envoyé par un nœud pour établir une réservation est bien reçu par tous ses nœuds voisins. Dans la deuxième partie de cette thèse, nous appliquons le protocole de réservation proposé au trafic de type voix. Ainsi, nous étendons ce protocole afin de prendre en compte les caractéristiques du trafic voix, tout en permettant le transport de trafic de données. Nous nous focalisons sur l'utilisation efficace de la bande passante et les mécanismes pour réduire le gaspillage de bande passante. La dernière partie de cette thèse concerne l'extension du protocole proposé en vue de réserver la bande passante pour une connexion temps réel sur un chemin. Ainsi, le protocole MAC de réservation proposé est couplé avec un protocole de routage réactif. En outre, le protocole est étendu avec des mécanismes de gestion de à mobilité afin de faire face à la dégradation des performances due à la mobilité des nœuds. Nous évaluons les performances du protocole proposé dans plusieurs scénarios dans lesquels nous montrons sa supériorité par rapport aux standards existants.QoS provisioning over Mobile Ad-Hoc Networks (MANETs) has attracted a great attention in recent years. While much research effort has been devoted to provide QoS over wired and cellular networks, QoS solutions for the support of real-time traffic over MANETs remains one of the most challenging and least explored areas. In fact, real-time applications such as voice and video could not function properly on MANETs without a QoS oriented medium access control (MAC) scheme. Indeed, real-time traffics claim strict requirements in terms of transmission delay and packet dropping that can be fulfilled only if the MAC sub-layer provides bounded channel access delay, and low collision rate. The purpose of this thesis is the proposal and analysis of an efficient reservation MAC protocol to provide QoS support over MANETs. Firstly, we study one major issue in resource reservation for MANETs which is reservation consistency. Our analysis of existing reservation MAC protocols for MANETs reveals that many reservation conflicts between neighbor nodes occur during the reservation establishment phase. These conflicts which are mainly due to collisions of reservation control messages, have an important impact on the performance of the reservation protocol, and lead to a significant collision and loss of packets during the life-time of the connection, which is not acceptable for real-time traffics. We design a new reservation MAC protocol that resolves these conflicts. The main principle of our protocol is to achieve better coordination between neighbor nodes in order to ensure consistency of reservations. Thus, before considering a reservation as successful, the protocol tries to ensure that each reservation control message transmitted by a node is successfully received by all its neighbors. In the second part of this thesis, we apply the proposed reservation protocol to voice traffic. Thus, we extend this protocol in order to take into account the characteristics of voice traffic, while enabling data traffic. We focus on efficient bandwidth utilization and mechanisms to reduce the waste of bandwidth. The last part of this thesis relates to the extension of the proposed protocol in order to reserve resources for a real-time connection along a path. Thus, the proposed reservation MAC protocol is coupled with a reactive routing protocol. In addition, the protocol is extended with mobility handling mechanisms in order to cope with performance degradation due to mobility of nodes. We evaluate the performance of the proposed scheme in several scenarios where we show its superiority compared to existing standards
    corecore