305 research outputs found

    Modeling and Mitigation of Wireless Communications Interference for Spectrum Sharing with Radar

    Get PDF
    Due to both economic incentives and policy mandates, researchers increasingly face the challenge of enabling spectrum sharing between radar and wireless communications systems. In the past eight years, researchers have begun to suggest a wide variety of approaches to radar-communications spectrum sharing, ranging from transmitter design to receiver design, from spatial to temporal to other-dimensional multiplexing, and from cooperative to non-cooperative sharing. Within this diverse field of innovation, this dissertation makes two primary contributions. First, a model for wireless communications interference and its effects on adaptive-threshold radar detection is proposed. Based on both theoretical and empirical study, we find evidence for both Gaussian and non-Gaussian communications interference models, depending on the modeling situation. Further, such interference can impact radar receivers via two mechanisms—model mismatch and boost to the underlying noise floor—and both mechanisms deserve attention. Second, an innovative signal processing algorithm is proposed for radar detection in the presence of cyclostationary, linearly-modulated, digital communications (LMDC) interference (such as OFDM or CDMA) and a stationary background component. The proposed detector consists of a novel whitening filter followed by the traditional matched filter. Performance results indicate that the proposed cyclostationary-based detector outperforms a standard equivalent detector based on a stationary interference model, particularly when the number of cyclostationary LMDC transmitters is small and their interference-to-noise ratio (INR) is large relative to the stationary background

    Characterizing Cyclostationary Features of Digital Modulated Signals with Empirical Measurements Using Spectral Correlation Function

    Get PDF
    Signal detection is widely used in many applications. Some examples include Cognitive Radio (CR) and military intelligence. CRs use signal detection to sense spectral occupancy. Without guaranteed signal detection, a CR cannot reliably perform its role. Similarly, signal detection is the first step for garnering an opponent\u27s information. Wireless signal detection can be performed using many different techniques. Some of the most popular include matched filters, energy detectors (which use measurements such as the Power Spectral Density (PSD) of the signal), and Cyclostationary Feature Detectors (CFD). Among these techniques, CFD can be viewed as a compromise technique, in that it theoretically has better low Signal-to-Noise Ratio (SNR) detection performance than energy detectors and less strict requirements than matched filters. CFD uses the cyclostationarity of a signal to detect its presence. Signals that have cyclostationarity exhibit correlations between widely separated spectral components. Functions that describe this cyclostationarity include the Spectral Correlation Function (SCF). One advantage of cyclostationary approaches such as these is that Additive White Gaussian Noise (AWGN) is cancelled in these functions. This characteristic makes SCF outperform PSD under low SNR environments. However, whereas PSD has been well investigated through empirical experiments throughout many researches, SCF features under real world noise have not been investigated with empirical experiments. In this effort, firstly, the SCF features of modulated signals under real world channel noise are identified and characterized using the concept of path loss. Secondly, outperformance of SCF under low SNR environment with real world signals is verified with real world signals and noise

    A Linear Subspace Approach to Burst Communication Signal Processing

    Get PDF
    This dissertation focuses on the topic of burst signal communications in a high interference environment. It derives new signal processing algorithms from a mathematical linear subspace approach instead of the common stationary or cyclostationary approach. The research developed new algorithms that have well-known optimality criteria associated with them. The investigation demonstrated a unique class of multisensor filters having a lower mean square error than all other known filters, a maximum likelihood time difference of arrival estimator that outperformed previously optimal estimators, and a signal presence detector having a selectivity unparalleled in burst interference environments. It was further shown that these improvements resulted in a greater ability to communicate, to locate electronic transmitters, and to mitigate the effects of a growing interference environment

    Spectrum Sensing Security in Cognitive Radio Networks

    Get PDF
    This thesis explores the use of unsupervised machine learning for spectrum sensing in cognitive radio (CR) networks from a security perspective. CR is an enabling technology for dynamic spectrum access (DSA) because of a CR's ability to reconfigure itself in a smart way. CR can adapt and use unoccupied spectrum with the help of spectrum sensing and DSA. DSA is an efficient way to dynamically allocate white spaces (unutilized spectrum) to other CR users in order to tackle the spectrum scarcity problem and improve spectral efficiency. So far various techniques have been developed to efficiently detect and classify signals in a DSA environment. Neural network techniques, especially those using unsupervised learning have some key advantages over other methods mainly because of the fact that minimal preconfiguration is required to sense the spectrum. However, recent results have shown some possible security vulnerabilities, which can be exploited by adversarial users to gain unrestricted access to spectrum by fooling signal classifiers. It is very important to address these new classes of security threats and challenges in order to make CR a long-term commercially viable concept. This thesis identifies some key security vulnerabilities when unsupervised machine learning is used for spectrum sensing and also proposes mitigation techniques to counter the security threats. The simulation work demonstrates the ability of malicious user to manipulate signals in such a way to confuse signal classifier. The signal classifier is forced by the malicious user to draw incorrect decision boundaries by presenting signal features which are akin to a primary user. Hence, a malicious user is able to classify itself as a primary user and thus gains unrivaled access to the spectrum. First, performance of various classification algorithms are evaluated. K-means and weighted classification algorithms are selected because of their robustness against proposed attacks as compared to other classification algorithm. Second, connection attack, point cluster attack, and random noise attack are shown to have an adverse effect on classification algorithms. In the end, some mitigation techniques are proposed to counter the effect of these attacks

    Noise Estimation in the Presence of BPSK Digital Burst Transmissions

    Get PDF
    This research explores noise estimation techniques in an attempt to improve upon a previously developed digital burst transmission Binary Phase Shift Keyed (BPSK) demodulator. The demodulator success is dependent on the accuracy of the estimate of Power Spectral Density (PSD) of the unknown noise. Given a discrete time signal transformed into the frequency domain, the research seeks to determine if it is possible to effectively estimate the PSD of the unknown noise. The demodulator was developed using a new signal model for digital burst transmissions based on linear spectral subspace theory. Using this model and the redundancy properties of BPSK digital burst transmissions, five noise estimation techniques will be presented and tested. The success of the methods will be reported in two ways, .first, the effect the new noise PSD estimates have on the success of the demodulator and second, a comparison to the actual PSD of the noise

    A Channel Ranking And Selection Scheme Based On Channel Occupancy And SNR For Cognitive Radio Systems

    Get PDF
    Wireless networks and information traffic have grown exponentially over the last decade. Consequently, an increase in demand for radio spectrum frequency bandwidth has resulted. Recent studies have shown that with the current fixed spectrum allocation (FSA), radio frequency band utilization ranges from 15% to 85%. Therefore, there are spectrum holes that are not utilized all the time by the licensed users, and, thus the radio spectrum is inefficiently exploited. To solve the problem of scarcity and inefficient utilization of the spectrum resources, dynamic spectrum access has been proposed as a solution to enable sharing and using available frequency channels. With dynamic spectrum allocation (DSA), unlicensed users can access and use licensed, available channels when primary users are not transmitting. Cognitive Radio technology is one of the next generation technologies that will allow efficient utilization of spectrum resources by enabling DSA. However, dynamic spectrum allocation by a cognitive radio system comes with the challenges of accurately detecting and selecting the best channel based on the channelâs availability and quality of service. Therefore, the spectrum sensing and analysis processes of a cognitive radio system are essential to make accurate decisions. Different spectrum sensing techniques and channel selection schemes have been proposed. However, these techniques only consider the spectrum occupancy rate for selecting the best channel, which can lead to erroneous decisions. Other communication parameters, such as the Signal-to-Noise Ratio (SNR) should also be taken into account. Therefore, the spectrum decision-making process of a cognitive radio system must use techniques that consider spectrum occupancy and channel quality metrics to rank channels and select the best option. This thesis aims to develop a utility function based on spectrum occupancy and SNR measurements to model and rank the sensed channels. An evolutionary algorithm-based SNR estimation technique was developed, which enables adaptively varying key parameters of the existing Eigenvalue-based blind SNR estimation technique. The performance of the improved technique is compared to the existing technique. Results show the evolutionary algorithm-based estimation performing better than the existing technique. The utility-based channel ranking technique was developed by first defining channel utility function that takes into account SNR and spectrum occupancy. Different mathematical functions were investigated to appropriately model the utility of SNR and spectrum occupancy rate. A ranking table is provided with the utility values of the sensed channels and compared with the usual occupancy rate based channel ranking. According to the results, utility-based channel ranking provides a better scope of making an informed decision by considering both channel occupancy rate and SNR. In addition, the efficiency of several noise cancellation techniques was investigated. These techniques can be employed to get rid of the impact of noise on the received or sensed signals during spectrum sensing process of a cognitive radio system. Performance evaluation of these techniques was done using simulations and the results show that the evolutionary algorithm-based noise cancellation techniques, particle swarm optimization and genetic algorithm perform better than the regular gradient descent based technique, which is the least-mean-square algorithm

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges
    • …
    corecore