5,610 research outputs found

    Entanglement-assisted zero-error source-channel coding

    Get PDF
    We study the use of quantum entanglement in the zero-error source-channel coding problem. Here, Alice and Bob are connected by a noisy classical one-way channel, and are given correlated inputs from a random source. Their goal is for Bob to learn Alice's input while using the channel as little as possible. In the zero-error regime, the optimal rates of source codes and channel codes are given by graph parameters known as the Witsenhausen rate and Shannon capacity, respectively. The Lov\'asz theta number, a graph parameter defined by a semidefinite program, gives the best efficiently-computable upper bound on the Shannon capacity and it also upper bounds its entanglement-assisted counterpart. At the same time it was recently shown that the Shannon capacity can be increased if Alice and Bob may use entanglement. Here we partially extend these results to the source-coding problem and to the more general source-channel coding problem. We prove a lower bound on the rate of entanglement-assisted source-codes in terms Szegedy's number (a strengthening of the theta number). This result implies that the theta number lower bounds the entangled variant of the Witsenhausen rate. We also show that entanglement can allow for an unbounded improvement of the asymptotic rate of both classical source codes and classical source-channel codes. Our separation results use low-degree polynomials due to Barrington, Beigel and Rudich, Hadamard matrices due to Xia and Liu and a new application of remote state preparation.Comment: Title has been changed. Previous title was 'Zero-error source-channel coding with entanglement'. Corrected an error in Lemma 1.

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes

    On Multiple Decoding Attempts for Reed-Solomon Codes: A Rate-Distortion Approach

    Full text link
    One popular approach to soft-decision decoding of Reed-Solomon (RS) codes is based on using multiple trials of a simple RS decoding algorithm in combination with erasing or flipping a set of symbols or bits in each trial. This paper presents a framework based on rate-distortion (RD) theory to analyze these multiple-decoding algorithms. By defining an appropriate distortion measure between an error pattern and an erasure pattern, the successful decoding condition, for a single errors-and-erasures decoding trial, becomes equivalent to distortion being less than a fixed threshold. Finding the best set of erasure patterns also turns into a covering problem which can be solved asymptotically by rate-distortion theory. Thus, the proposed approach can be used to understand the asymptotic performance-versus-complexity trade-off of multiple errors-and-erasures decoding of RS codes. This initial result is also extended a few directions. The rate-distortion exponent (RDE) is computed to give more precise results for moderate blocklengths. Multiple trials of algebraic soft-decision (ASD) decoding are analyzed using this framework. Analytical and numerical computations of the RD and RDE functions are also presented. Finally, simulation results show that sets of erasure patterns designed using the proposed methods outperform other algorithms with the same number of decoding trials.Comment: to appear in the IEEE Transactions on Information Theory (Special Issue on Facets of Coding Theory: from Algorithms to Networks

    On the BICM Capacity

    Full text link
    Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e. constellations that make BICM achieve the Shannon limit -1.59 \tr{dB}. It is shown that the \Eb/N_0 required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.Comment: Submitted to the IEEE Transactions on Information Theor

    Correcting a Fraction of Errors in Nonbinary Expander Codes with Linear Programming

    Full text link
    A linear-programming decoder for \emph{nonbinary} expander codes is presented. It is shown that the proposed decoder has the maximum-likelihood certificate properties. It is also shown that this decoder corrects any pattern of errors of a relative weight up to approximately 1/4 \delta_A \delta_B (where \delta_A and \delta_B are the relative minimum distances of the constituent codes).Comment: Part of this work was presented at the IEEE International Symposium on Information Theory 2009, Seoul, Kore
    • …
    corecore