1,223 research outputs found

    Power Efficient MISO Beamforming for Secure Layered Transmission

    Full text link
    This paper studies secure layered video transmission in a multiuser multiple-input single-output (MISO) beamforming downlink communication system. The power allocation algorithm design is formulated as a non-convex optimization problem for minimizing the total transmit power while guaranteeing a minimum received signal-to-interference-plus-noise ratio (SINR) at the desired receiver. In particular, the proposed problem formulation takes into account the self-protecting architecture of layered transmission and artificial noise generation to prevent potential information eavesdropping. A semi-definite programming (SDP) relaxation based power allocation algorithm is proposed to obtain an upper bound solution. A sufficient condition for the global optimal solution is examined to reveal the tightness of the upper bound solution. Subsequently, two suboptimal power allocation schemes with low computational complexity are proposed for enabling secure layered video transmission. Simulation results demonstrate significant transmit power savings achieved by the proposed algorithms and layered transmission compared to the baseline schemes.Comment: Accepted for presentation at the IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 201

    Optimization of Occlusion-Inducing Depth Pixels in 3-D Video Coding

    Full text link
    The optimization of occlusion-inducing depth pixels in depth map coding has received little attention in the literature, since their associated texture pixels are occluded in the synthesized view and their effect on the synthesized view is considered negligible. However, the occlusion-inducing depth pixels still need to consume the bits to be transmitted, and will induce geometry distortion that inherently exists in the synthesized view. In this paper, we propose an efficient depth map coding scheme specifically for the occlusion-inducing depth pixels by using allowable depth distortions. Firstly, we formulate a problem of minimizing the overall geometry distortion in the occlusion subject to the bit rate constraint, for which the depth distortion is properly adjusted within the set of allowable depth distortions that introduce the same disparity error as the initial depth distortion. Then, we propose a dynamic programming solution to find the optimal depth distortion vector for the occlusion. The proposed algorithm can improve the coding efficiency without alteration of the occlusion order. Simulation results confirm the performance improvement compared to other existing algorithms
    • …
    corecore