1,007 research outputs found

    Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks

    Get PDF
    This study is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time stochastic non-linear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel distributed state estimator is designed where the available innovations are not only from the individual sensor, but also from its neighbouring ones according to the given topology. The purpose of the problem under consideration is to design a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilising the property of the Kronecker product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimisation one that can be easily solved via available software packages. Finally, a simulation example is utilised to illustrate the usefulness of the proposed design scheme of event-triggered distributed state estimators.This work was supported in part by Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139, 61473076, 61374127 and 61422301, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany

    FD-ZKF: A Zonotopic Kalman Filter optimizing fault detection rather than state estimation

    Get PDF
    Enhancing the sensitivity to faults with respect to disturbances, rather than optimizing the precision of the state estimation using Kalman Filters (KF) is the subject of this paper. The stochastic paradigm (KF) is based on minimizing the trace of the state estimation error covariance. In the context of the bounded-error paradigm using Zonotopic Kalman Filters (ZKF), this is analog to minimize the covariation trace. From this analogy and keeping a similar observer-based structure as in ZKF, a criterion jointly inspired by set-membership approaches and approximate decoupling techniques coming from parity-space residual generation is proposed. Its on-line maximization provides an optimal time-varying observer gain leading to the so-called FD-ZKF filter that allows enhancing the fault detection properties. The characterization of minimum detectable fault magnitude is done based on a sensitivity analysis. The effect of the uncertainty is addressed using a set-membership approach and a zonotopic representation reducing set operations to simple matrix calculations. A case study based on a quadruple-tank system is used both to illustrate and compare the effectiveness of the results obtained from the FD-ZKF approach compared to a pure ZKF approachPostprint (author's final draft

    A Fuzzy-Kalman filtering strategy for state estimation

    Get PDF
    This thesis considers the combination of Fuzzy logic and Kalman Filtering that have traditionally been considered to be radically different. The former is considered heuristic and the latter statistical. In this thesis a philosophical justification for their combination is presented. Kalman Filtering is revised to enable the incorporation of fuzzy logic in its formulation. This formulation is subsequently referred to as the Revised-Kalman Filter. Heuristic membership functions are then used in the Revised-Kalman Filter to substitute for the system and measurement covariance matrices to form a fuzzy rendition of the Kalman Filter. The Fuzzy Kalman Filter formulation is further revised according to a concept referred to as the “Parallel Distributed Compensation” to allow for further heuristic adjustment of the corrective gain. This formulation is referred to as the Parallel Distributed Compensated-Fuzzy Kalman Filter. Simulated implementations of the above filters reveal that a tuned Kalman Filter provides the best performance. However, if conditions change, the Kalman filter’s performance degrades and a better performance is obtained from the two versions of the Fuzzy Kalman Filters

    State Estimation for Distributed Systems with Stochastic and Set-membership Uncertainties

    Get PDF
    State estimation techniques for centralized, distributed, and decentralized systems are studied. An easy-to-implement state estimation concept is introduced that generalizes and combines basic principles of Kalman filter theory and ellipsoidal calculus. By means of this method, stochastic and set-membership uncertainties can be taken into consideration simultaneously. Different solutions for implementing these estimation algorithms in distributed networked systems are presented

    Linear Estimation in Interconnected Sensor Systems with Information Constraints

    Get PDF
    A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed
    corecore