494 research outputs found

    Optimal Isotropic Wavelets for Localized Tight Frame Representations

    Full text link

    On The Continuous Steering of the Scale of Tight Wavelet Frames

    Full text link
    In analogy with steerable wavelets, we present a general construction of adaptable tight wavelet frames, with an emphasis on scaling operations. In particular, the derived wavelets can be "dilated" by a procedure comparable to the operation of steering steerable wavelets. The fundamental aspects of the construction are the same: an admissible collection of Fourier multipliers is used to extend a tight wavelet frame, and the "scale" of the wavelets is adapted by scaling the multipliers. As an application, the proposed wavelets can be used to improve the frequency localization. Importantly, the localized frequency bands specified by this construction can be scaled efficiently using matrix multiplication

    Mixed Needlets

    Get PDF
    The construction of needlet-type wavelets on sections of the spin line bundles over the sphere has been recently addressed in Geller and Marinucci (2008), and Geller et al. (2008,2009). Here we focus on an alternative proposal for needlets on this spin line bundle, in which needlet coefficients arise from the usual, rather than the spin, spherical harmonics, as in the previous constructions. We label this system mixed needlets and investigate in full their properties, including localization, the exact tight frame characterization, reconstruction formula, decomposition of functional spaces, and asymptotic uncorrelation in the stochastic case. We outline astrophysical applications.Comment: 26 page

    Gabor Shearlets

    Get PDF
    In this paper, we introduce Gabor shearlets, a variant of shearlet systems, which are based on a different group representation than previous shearlet constructions: they combine elements from Gabor and wavelet frames in their construction. As a consequence, they can be implemented with standard filters from wavelet theory in combination with standard Gabor windows. Unlike the usual shearlets, the new construction can achieve a redundancy as close to one as desired. Our construction follows the general strategy for shearlets. First we define group-based Gabor shearlets and then modify them to a cone-adapted version. In combination with Meyer filters, the cone-adapted Gabor shearlets constitute a tight frame and provide low-redundancy sparse approximations of the common model class of anisotropic features which are cartoon-like functions.Comment: 24 pages, AMS LaTeX, 4 figure

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe
    • …
    corecore