768 research outputs found

    Dynamic Intrusion Detection in Resource-Constrained Cyber Networks

    Full text link
    We consider a large-scale cyber network with N components (e.g., paths, servers, subnets). Each component is either in a healthy state (0) or an abnormal state (1). Due to random intrusions, the state of each component transits from 0 to 1 over time according to certain stochastic process. At each time, a subset of K (K < N) components are checked and those observed in abnormal states are fixed. The objective is to design the optimal scheduling for intrusion detection such that the long-term network cost incurred by all abnormal components is minimized. We formulate the problem as a special class of Restless Multi-Armed Bandit (RMAB) process. A general RMAB suffers from the curse of dimensionality (PSPACE-hard) and numerical methods are often inapplicable. We show that, for this class of RMAB, Whittle index exists and can be obtained in closed form, leading to a low-complexity implementation of Whittle index policy with a strong performance. For homogeneous components, Whittle index policy is shown to have a simple structure that does not require any prior knowledge on the intrusion processes. Based on this structure, Whittle index policy is further shown to be optimal over a finite time horizon with an arbitrary length. Beyond intrusion detection, these results also find applications in queuing networks with finite-size buffers.Comment: 9 pages, 5 figure

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    Quickest anomaly detection: A case of active hypothesis testing

    Full text link
    Abstract — The problem of quickest detection of an anomalous process among M processes is considered. At each time, a subset of the processes can be observed, and the observations follow two different distributions, depending on whether the process is normal or abnormal. The objective is a sequential search strategy that minimizes the expected detection time subject to an error probability constraint. This problem can be considered as a special case of active hypothesis testing first considered by Chernoff in 1959, where a randomized test was proposed and shown to be asymptotically optimal. For the special case considered in this paper, we show that a simple deterministic test achieves asymptotic optimality and offers better performance in the finite regime. Index Terms—Sequential detection, hypothesis testing, dy-namic search. I

    Asymptotically Optimal Anomaly Detection via Sequential Testing

    Full text link
    Sequential detection of independent anomalous processes among K processes is considered. At each time, only M processes can be observed, and the observations from each chosen process follow two different distributions, depending on whether the process is normal or abnormal. Each anomalous process incurs a cost per unit time until its anomaly is identified and fixed. Switching across processes and state declarations are allowed at all times, while decisions are based on all past observations and actions. The objective is a sequential search strategy that minimizes the total expected cost incurred by all the processes during the detection process under reliability constraints. Low-complexity algorithms are established to achieve asymptotically optimal performance as the error constraints approach zero. Simulation results demonstrate strong performance in the finite regime.Comment: 28 pages, 5 figures, part of this work will be presented at the 52nd Annual Allerton Conference on Communication, Control, and Computing, 201

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio
    • …
    corecore