755 research outputs found

    CCL: a portable and tunable collective communication library for scalable parallel computers

    Get PDF
    A collective communication library for parallel computers includes frequently used operations such as broadcast, reduce, scatter, gather, concatenate, synchronize, and shift. Such a library provides users with a convenient programming interface, efficient communication operations, and the advantage of portability. A library of this nature, the Collective Communication Library (CCL), intended for the line of scalable parallel computer products by IBM, has been designed. CCL is part of the parallel application programming interface of the recently announced IBM 9076 Scalable POWERparallel System 1 (SP1). In this paper, we examine several issues related to the functionality, correctness, and performance of a portable collective communication library while focusing on three novel aspects in the design and implementation of CCL: 1) the introduction of process groups, 2) the definition of semantics that ensures correctness, and 3) the design of new and tunable algorithms based on a realistic point-to-point communication model

    Some Optimally Adaptive Parallel Graph Algorithms on EREW PRAM Model

    Get PDF
    The study of graph algorithms is an important area of research in computer science, since graphs offer useful tools to model many real-world situations. The commercial availability of parallel computers have led to the development of efficient parallel graph algorithms. Using an exclusive-read and exclusive-write (EREW) parallel random access machine (PRAM) as the computation model with a fixed number of processors, we design and analyze parallel algorithms for seven undirected graph problems, such as, connected components, spanning forest, fundamental cycle set, bridges, bipartiteness, assignment problems, and approximate vertex coloring. For all but the last two problems, the input data structure is an unordered list of edges, and divide-and-conquer is the paradigm for designing algorithms. One of the algorithms to solve the assignment problem makes use of an appropriate variant of dynamic programming strategy. An elegant data structure, called the adjacency list matrix, used in a vertex-coloring algorithm avoids the sequential nature of linked adjacency lists. Each of the proposed algorithms achieves optimal speedup, choosing an optimal granularity (thus exploiting maximum parallelism) which depends on the density or the number of vertices of the given graph. The processor-(time)2 product has been identified as a useful parameter to measure the cost-effectiveness of a parallel algorithm. We derive a lower bound on this measure for each of our algorithms

    Supporting divide-and-conquer algorithms for image processing

    Full text link
    Divide-and-conquer is an important algorithm strategy, but it is not widely used in image processing. For higher-level, symbolic operations it should often be the strategy of choice for parallel computers. It is natural for a machine with a regular interconnection scheme such as a mesh, mesh with broadcasting, tree, pyramid, mesh-of-trees, PRAM, or hypercube, and can be used either on a machine with a pixel per processor or on one with many pixels per processor. However, divide-and-conquer algorithms use parallel computers in a different manner than, say, local edge detection, so machines optimized for local neighborhood algorithms may be poor for divide-and-conquer algorithms. Some characteristics of divide-and-conquer algorithms are examined, along with some of their implications for the design of machines and languages which can support the efficient programming and execution of divide-and-conquer algorithms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26821/1/0000380.pd

    An Elegant Algorithm for the Construction of Suffix Arrays

    Get PDF
    The suffix array is a data structure that finds numerous applications in string processing problems for both linguistic texts and biological data. It has been introduced as a memory efficient alternative for suffix trees. The suffix array consists of the sorted suffixes of a string. There are several linear time suffix array construction algorithms (SACAs) known in the literature. However, one of the fastest algorithms in practice has a worst case run time of O(n2)O(n^2). The problem of designing practically and theoretically efficient techniques remains open. In this paper we present an elegant algorithm for suffix array construction which takes linear time with high probability; the probability is on the space of all possible inputs. Our algorithm is one of the simplest of the known SACAs and it opens up a new dimension of suffix array construction that has not been explored until now. Our algorithm is easily parallelizable. We offer parallel implementations on various parallel models of computing. We prove a lemma on the \ell-mers of a random string which might find independent applications. We also present another algorithm that utilizes the above algorithm. This algorithm is called RadixSA and has a worst case run time of O(nlogn)O(n\log{n}). RadixSA introduces an idea that may find independent applications as a speedup technique for other SACAs. An empirical comparison of RadixSA with other algorithms on various datasets reveals that our algorithm is one of the fastest algorithms to date. The C++ source code is freely available at http://www.engr.uconn.edu/~man09004/radixSA.zi

    On the design and implementation of broadcast and global combine operations using the postal model

    Get PDF
    There are a number of models that were proposed in recent years for message passing parallel systems. Examples are the postal model and its generalization the LogP model. In the postal model a parameter λ is used to model the communication latency of the message-passing system. Each node during each round can send a fixed-size message and, simultaneously, receive a message of the same size. Furthermore, a message sent out during round r will incur a latency of hand will arrive at the receiving node at round r + λ - 1. Our goal in this paper is to bridge the gap between the theoretical modeling and the practical implementation. In particular, we investigate a number of practical issues related to the design and implementation of two collective communication operations, namely, the broadcast operation and the global combine operation. Those practical issues include, for example, 1) techniques for measurement of the value of λ on a given machine, 2) creating efficient broadcast algorithms that get the latency hand the number of nodes n as parameters and 3) creating efficient global combine algorithms for parallel machines with λ which is not an integer. We propose solutions that address those practical issues and present results of an experimental study of the new algorithms on the Intel Delta machine. Our main conclusion is that the postal model can help in performance prediction and tuning, for example, a properly tuned broadcast improves the known implementation by more than 20%

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also
    corecore