26 research outputs found

    Modified differential transformation method for solving classes of non-linear differential equations

    Get PDF
    In this research article, a numerical scheme namely modified differential transformation method (MDTM) is employed successfully to obtain accurate approximate solutions for classes of nonlinear differential equations. This scheme based on differential transform method (DTM), Laplace transform and Pad´e approximants. Validity and efficiency of MDTM are tested upon several examples and comparisons.are made to demonstrate that. The results lead to conclude that the MDTM is effective, explicit and easy to use.Publisher's Versio

    Modeling and inversion of seismic data using multiple scattering, renormalization and homotopy methods

    Get PDF
    Seismic scattering theory plays an important role in seismic forward modeling and is the theoretical foundation for various seismic imaging methods. Full waveform inversion is a powerful technique for obtaining a high-resolution model of the subsurface. One objective of this thesis is to develop convergent scattering series solutions of the Lippmann-Schwinger equation in strongly scattering media using renormalization and homotopy methods. Other objectives of this thesis are to develop efficient full waveform inversion methods of time-lapse seismic data and, to investigate uncertainty quantification in full waveform inversion for anisotropic elastic media based on integral equation approaches and the iterated extended Kalman filter. The conventional Born scattering series is obtained by expanding the Lippmann-Schwinger equation in terms of an iterative solution based on perturbation theory. Such an expansion assumes weak scattering and may have the problems of convergence in strongly scattering media. This thesis presents two scattering series, referred to as convergent Born series (CBS) and homotopy analysis method (HAM) scattering series for frequency-domain seismic wave modeling. For the convergent Born series, a physical interpretation from the renormalization prospective is given. The homotopy scattering series is derived by using homotopy analysis method, which is based on a convergence control parameter hh and a convergence control operator HH that one can use to ensure convergence for strongly scattering media. The homotopy scattering scattering series solutions of the Lippmann-Schwinger equation, which is convergent in strongly scattering media. The homotopy scattering series is a kind of unified scattering series theory that includes the conventional and convergent Born series as special cases. The Fast Fourier Transform (FFT) is employed for efficient implementation of matrix-vector multiplication for the convergent Born series and the homotopy scattering series. This thesis presents homotopy methods for ray based seismic modeling in strongly anisotropic media. To overcome several limitations of small perturbations and weak anisotropy in obtaining the traveltime approximations in anisotropic media by expanding the anisotropic eikonal equation in terms of the anisotropic parameters and the elliptically anisotropic eikonal equation based on perturbation theory, this study applies the homotopy analysis method to the eikonal equation. Then this thesis presents a retrieved zero-order deformation equation that creates a map from the anisotropic eikonal equation to a linearized partial differential equation system. The new traveltime approximations are derived by using the linear and nonlinear operators in the retrieved zero-order deformation equation. Flexibility on variable anisotropy parameters is naturally incorporated into the linear differential equations, allowing a medium of arbitrarily anisotropy. This thesis investigates efficient target-oriented inversion strategies for improving full waveform inversion of time-lapse seismic data based on extending the distorted Born iterative T-matrix inverse scattering to a local inversion of a small region of interest (e. g. reservoir under production). The target-oriented approach is more efficient for inverting the monitor data. The target-oriented inversion strategy requires properly specifying the wavefield extrapolation operators in the integral equation formulation. By employing the T-matrix and the Gaussian beam based Green’s function, the wavefield extrapolation for the time-lapse inversion is performed in the baseline model from the survey surface to the target region. I demonstrate the method by presenting numerical examples illustrating the sequential and double difference strategies. To quantify the uncertainty and multiparameter trade-off in the full waveform inversion for anisotropic elastic media, this study applies the iterated extended Kalman filter to anisotropic elastic full waveform inversion based on the integral equation method. The sensitivity matrix is an explicit representation with Green’s functions based on the nonlinear inverse scattering theory. Taking the similarity of sequential strategy between the multi-scale frequency domain full waveform inversion and data assimilation with an iterated extended Kalman filter, this study applies the explicit representation of sensitivity matrix to the the framework of Bayesian inference and then estimate the uncertainties in the full waveform inversion. This thesis gives results of numerical tests with examples for anisotropic elastic media. They show that the proposed Bayesian inversion method can provide reasonable reconstruction results for the elastic coefficients of the stiffness tensor and the framework is suitable for accessing the uncertainties and analysis of parameter trade-offs

    Dynamical Systems; Proceedings of an IIASA Workshop, Sopron, Hungary, September 9-13, 1985

    Get PDF
    The investigation of special topics in systems dynamics -- uncertain dynamic processes, viability theory, nonlinear dynamics in models for biomathematics, inverse problems in control systems theory -- has become a major issue at the System and Decision Sciences Research Program of IIASA. The above topics actually reflect two different perspectives in the investigation of dynamic processes. The first, motivated by control theory, is concerned with the properties of dynamic systems that are stable under variations in the systems' parameters. This allows us to specify classes of dynamic systems for which it is possible to construct and control a whole "tube" of trajectories assigned to a system with uncertain parameters and to resolve some inverse problems of control theory within numerically stable solution schemes. The second perspective is to investigate generic properties of dynamic systems that are due to nonlinearity (as bifurcations theory, chaotic behavior, stability properties, and related problems in the qualitative theory of differential systems). Special stress is given to the applications of nonlinear dynamic systems theory to biomathematics and ecology. The proceedings of a workshop on the "Mathematics of Dynamic Processes", dealing with these topics is presented in this volume

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    An exact approach for aggregated formulations

    Get PDF
    corecore