818 research outputs found

    Cooperative energy management for a cluster of households prosumers

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe increment of electrical and electronic appliances for improving the lifestyle of residential consumers had led to a larger demand of energy. In order to supply their energy requirements, the consumers have changed the paradigm by integrating renewable energy sources to their power grid. Therefore, consumers become prosumers in which they internally generate and consume energy looking for an autonomous operation. This paper proposes an energy management system for coordinating the operation of distributed household prosumers. It was found that better performance is achieved when cooperative operation with other prosumers in a neighborhood environment is achieved. Simulation and experimental results validate the proposed strategy by comparing the performance of islanded prosumers with the operation in cooperative modePeer ReviewedPostprint (author's final draft

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF

    Demand and Storage Management in a Prosumer Nanogrid Based on Energy Forecasting

    Get PDF
    Energy efficiency and consumers' role in the energy system are among the strategic research topics in power systems these days. Smart grids (SG) and, specifically, microgrids, are key tools for these purposes. This paper presents a three-stage strategy for energy management in a prosumer nanogrid. Firstly, energy monitoring is performed and time-space compression is applied as a tool for forecasting energy resources and power quality (PQ) indices; secondly, demand is managed, taking advantage of smart appliances (SA) to reduce the electricity bill; finally, energy storage systems (ESS) are also managed to better match the forecasted generation of each prosumer. Results show how these strategies can be coordinated to contribute to energy management in the prosumer nanogrid. A simulation test is included, which proves how effectively the prosumers' power converters track the power setpoints obtained from the proposed strategy.Spanish Agencia Estatal de Investigacion ; Fondo Europeo de Desarrollo Regional

    A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Community Microgrid offers effective energy harvesting from distributed energy resources and efficient energy consumption by employing an energy management system (EMS). Therefore, the collaborative microgrids are essentially required to apply an EMS, underlying an operative control strategy in order to provide an efficient system. An EMS is apt to optimize the operation of microgrids from several points of view. Optimal production planning, optimal demand-side management, fuel and emission constraints, the revenue of trading spinning and non-spinning reserve capacity can effectively be managed by EMS. Consequently, the importance of optimization is explicit in microgrid applications. In this paper, the most common control strategies in the microgrid community with potential pros and cons are analyzed. Moreover, a comprehensive review of single objective and multi-objective optimization methods is performed by considering the practical and technical constraints, uncertainty, and intermittency of renewable energies sources. The Pareto-optimal solution as the most popular multi-objective optimization approach is investigated for the advanced optimization algorithms. Eventually, feature selection and neural network-based clustering algorithms in order to analyze the Pareto-optimal set are introduced.This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN)–Agencia Estatal de Investigación (AEI), and by the European Regional Development Funds (ERDF), a way of making Europe, under Grant PGC2018-098946-B-I00 funded by MCIN/AEI/10.13039/501100011033/.Peer ReviewedPostprint (published version
    corecore