194 research outputs found

    Signaling for Optical Intensity Channels

    Get PDF
    With the growing popularity of social media services, e-commerce, and many other internet-based services, we are witnessing a rapid growth in the deployment of data centers and cloud computing platforms. As a result, the telecommunications industry has to continue providing additional network capacity to meet the increasing demand for bandwidth. The use of fiber-optic communications plays a key role in meeting this demand. Coherent optical transceivers improve spectral efficiency by allowing the use of multilevel in-phase and quadrature (I/Q) modulation formats, which encode information onto the optical carrier’s amplitude and phase. However, for short-haul optical links, using noncoherent optical transceivers, also known as intensity-modulated direct-detection (IM/DD) systems, is a more attractive low-cost approach. Since only the intensity of light can carry information, designing power- and spectrally-efficient modulation formats becomes challenging. Subcarrier modulation, a concept studied in wireless infrared communications, allows the use of I/Q modulation formats with IM/DD systems at the expense of power and spectral efficiency. This thesis addresses the problem of optimizing single-subcarrier modulation formats for noncoherent fiber and wireless optical communication systems in order to achieve a good trade-off between spectral efficiency, power efficiency, and cost/complexity. For the single-subcarrier three-dimensional signal space, denoted as raised-QAM in the literature, we propose a set of 4-, 8-, and 16-level modulation formats which are numerically optimized for average electrical, average optical, and peak power. In the absence of error-correcting codes, the optimized formats offer gains ranging from 0.6 to 3 dB compared to the best known formats. However, when error-correcting codes with performance near capacity are present, the obtained modulation formats offer gains ranging from 0.3 to 1 dB compared to previously known formats. In addition, laboratory experiments using the obtained 4- and 8-ary modulation formats were carried out. The performance improvement over the previously known formats conforms with the theoretical results. To address transceiver complexity, a two-dimensional signal space for optical IM/DD systems is proposed. The resulting modulation formats have simpler modulator and demodulator structures than the three-dimensional formats. Their spectra have in general narrower main lobes but slower roll-off, which make them a good choice for single-wavelength optical systems. The three-dimensional formats are more suitable for wavelength-division multiplexing systems, where crosstalk between adjacent channels is important

    Constellation Shaping in Optical Communication Systems

    Get PDF
    Exploiting the full-dimensional capacity of coherent optical communication systems is needed to overcome the increasing bandwidth demands of the future Internet. To achieve capacity, both coding and shaping gains are required, and they are, in principle, independent. Therefore it makes sense to study shaping and how it can be achieved in various dimensions and how various shaping schemes affect the whole performance in real systems. This thesis investigates the performance of constellation shaping methods including geometric shaping (GS) and probabilistic shaping (PS) in coherent fiber-optic systems. To study GS, instead of considering machine learning approaches or optimization of irregular constellations in two dimensions, we have explored multidimensional lattice-based constellations. These constellations provide a regular structure with a fast and low-complexity encoding and decoding. In simulations, we show the possibility of transmitting and detecting constellation with a size of more than 10^{28} points which can be done without a look-up table to store the constellation points. Moreover, improved performance in terms of bit error rate, symbol error rate, and transmission reach are demonstrated over the linear additive white Gaussian noise as well as the nonlinear fiber channel compared to QAM formats.Furthermore, we investigate the performance of PS in two separate scenarios, i.e., transmitter impairments and transmission over hybrid systems with on-off keying channels. In both cases, we find that while PS-QAM outperforms the uniform QAM in the linear regime, uniform QAM can achieve better performance at the optimum power in the presence of transmitter or channel nonlinearities

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Photonic Millimeter Wave Signal Generation and Transmission Over Hybrid Links in 5G Communication Networks

    Full text link
    [ES] El estándar de quinta generación (5G) es la clave potencial para satisfacer el aumento exponencial en la demanda de nuevas aplicaciones, servicios y usuarios. La tecnología 5G ofrecerá una latencia extremadamente baja de 1 ms, una velocidad máxima de datos de 10 Gbit/s, una alta densidad de conexión de hasta 106 dispositivos/km2 y permitirá una alta movilidad de los dispositivos de hasta 500 km/h. En esta Tesis se proponen varias soluciones basadas en tecnologías habilitadoras para el despliegue de redes 5G. La arquitectura de la red de acceso de radio en la nube (C-RAN) se emplea junto con las técnicas de Fotónica de Microondas como una solución prometedora para generar y transmitir señales de ondas milimétricas (mmW) en la próxima generación de comunicaciones móviles. La tecnología radio sobre fibra (RoF) ha demostrado ser una buena opción para enfrentarse al desafío de la distribución inalámbrica mmW debido a la gran distancia de transmisión, el gran ancho de banda y la inmunidad a las interferencias electromagnéticas, entre algunas de las principales ventajas. Además, esta tecnología se puede ampliar con comunicaciones ópticas de espacio libre (FSO) en sistemas de radio sobre FSO (RoFSO) en las redes inalámbricas. En esta Tesis, las señales mmW se generan fotónicamente mediante modulación externa de doble banda lateral con supresión de portadora (CS-DSB) y se distribuyen a través de enlaces fronthaul híbridos RoF/FSO. Además, la generación múltiple de señales permite la distribución reconfigurable en canales multiplexados por división de longitud de onda (WDM) desde una oficina central hasta las estaciones base, y se ha evaluado el impacto de las turbulencias producidas en los canales FSO sobre las señales mmW generadas fotónicamente en términos de fluctuaciones de potencia y ruido de fase de la señal. Se propone la técnica de modulación directa de un láser (DML) como solución principal para la transmisión de datos a través de enlaces ópticos híbridos que emplean un esquema de multiplicación de frecuencias ópticas, es decir, CS-DSB, para la generación de señales de mmW. En concreto, se evalúan teórica y experimentalmente los esquemas de generación fotónica local y remoto de señales mmW y se comparan para su implementación práctica en la red frontal de la C-RAN y, además, se estudia experimentalmente el impacto de la distorsión armónica y de la intermodulación en la transmisión de datos. Igualmente, con el fin de obtener la capacidad que ofrece el DML en términos de ancho de banda, también se presenta una evaluación teórica y experimental del efecto de la dispersión de la fibra y el chirp sobre diferentes anchos de banda de señales de M-modulación de amplitud en cuadratura (QAM). No obstante, la Tesis también incluye otro enfoque para la transmisión de datos basado en el uso de otro modulador externo. En este caso, la demostración experimental de la generación de señales ópticas empleando CS-DSB y la transmisión de señales a través de fibra híbrida y red frontal FSO se completa con un enlace de antena que permite transmitir señales 5G 64/256-QAM. La investigación realizada con los sistemas CS-DSB y DSB también permiten comparar la robustez frente al desvanecimiento inducido por la dispersión cromática de la fibra. Además, se ha realizado una evaluación experimental impacto las turbulencias producidas en los canales FSO sobre las señales mmW generadas fotónicamente con diferentes distribuciones térmicas y se ha cuantificado la degradación de la señal de datos de acuerdo con las condiciones de la turbulencia. Como demostradores finales, esta Tesis incluye un sistema de transmisión full-dúplex que emplea señales 5G en enlace descendente (DL) a 39 GHz y en enlace ascendente (UL) a 37 GHz; y la transmisión de señales OFDM LTE de 60 GHz (DL) y 25 GHz (UL) sobre una infraestructura heterogénea de frontal óptico que consiste en fibra óptica de 10 km, un canal FSO de 100 m y un enlace de radio inalámbrico de 2 m.[CA] L'estàndard de quinta generació (5G) és la clau potencial per a satisfer l'augment exponencial en la demanda de noves aplicacions, serveis i usuaris. La tecnologia 5G oferirà una latència extremadament baixa d'1 ms, una velocitat màxima de dades de 10 Gbit/s, una alta densitat de connexió de fins a 106 dispositius/km2 i permetrà una alta mobilitat dels dispositius de fins a 500 km/h. En aquesta tesi es proposen diverses solucions basades en tecnologies habilitadores per al desplegament de xarxes 5G. L'arquitectura de la xarxa d'accés de ràdio en el núvol (CRAN) s'empra junt amb les tècniques de Fotònica de Microones com una solució prometedora per a generar i transmetre senyals d'ones mil·limètriques (mmW) en la pròxima generació de comunicacions mòbils. La tecnologia ràdio sobre fibra ( RoF) ha demostrat ser una bona opció per a enfrontar-se al desafiament de la distribució sense fil mmW a causa de la gran distància de transmissió, el gran ample de banda i la immunitat a les interferències electromagnètiques, entre alguns dels principals avantatges. A més, aquesta tecnologia es pot ampliar amb comunicacions òptiques d'espai lliure (FSO) en sistemes de ràdio sobre FSO (RoFSO) en les xarxes sense fil. En aquesta Tesi, els senyals mmW es generen fotònicament per mitjà de modulació externa de doble banda lateral amb supressió de portadora (CS-DSB) i es distribueixen a través d'enllaços frontals híbrids RoF/FSO.. A més, la generació múltiple de senyals permet la distribució reconfigurable en canals multiplexats per divisió de longitud d'ona ( WDM) des d'una oficina central fins a les estacions base, i s'ha avaluat l'impacte de les turbulències produïdes en els canals FSO sobre els senyals mmW generades fotònicament en termes de fluctuacions de potència i soroll de fase del senyal. Aquest treball proposa la tècnica de modulació directa d'un làser (DML) com solució principal per a la transmissió de dades a través d'enllaços òptics híbrids que fan servir un esquema de multiplicació de freqüències òptiques, és a dir, CS-DSB, per a la generació de senyals de mmW. En concret, s'avalua teòric i experimentalment els esquemes de generació fotònica local i remota de senyals mmW i es comparen per a la seua implementació pràctica a la xarxa frontal de la C-RAN i a més, s'estudia experimentalment l'impacte de la distorsió harmònica i de la intermodulació en la transmissió de dades. Igualment, amb el fi d'obtindre la capacitat que ofereix el DML en termes d'amplada de banda, també es presenta una avaluació teòrica i experimental de l'efecte de la dispersió de la fibra i el chirp sobre diferents amples de banda de senyals de M-modulació d'amplitud en quadratura (QAM). No obstant això, la Tesis també inclou altre enfocament per a la transmissió de dades basat amb l¿ús d'altre modulador extern. En aquest cas, la demostració experimental de la generació de senyals òptics emprant CS-DSB i la transmissió de senyals a través de fibra híbrida i xarxa frontal FSO es completa com un enllaç d'antena que permet transmetre senyals 5G 64/256-QAM. La investigació realitzada amb els sistemes CS-DSB i DSB també permet comparar la seua robustesa davant l¿esvaïment induït per la dispersió cromàtica. A més, s'ha avaluat experimentalment l'impacte de les turbulències produïdes en els canals FSO sobre els senyals mmW generades fotònicament amb diferents distribucions tèrmiques i s'ha quantificat la degradació del senyal de dades d'acord amb les condicions de la turbulència. Com a demostradors finals, aquesta Tesi inclou un sistema de transmissió full-dúplex que empra senyals 5G en enllaç descendent (DL) a 39 GHz i en enllaç ascendent (UL) a 37 GHz; i la transmissió de senyals OFDM LTE de 60 GHz (DL) i 25 GHz (UL) sobre una infraestructura heterogènia de frontal òptic que consisteix en fibra òptica de 10 km, un canal FSO de 100 m i un enllaç de ràdio sense fil de 2 m.[EN] The fifth generation (5G) standard is the potential key to meet the exponentially increasing demand of the emerging applications, services and mobile end users. 5G technology will offer an extremely low latency of 1 ms, peak data rate of 10 Gbit/s, high contention density up to 106 devices/km2 and enable high mobility up to 500 km/h. This Thesis proposes several solutions based on enabling technologies for deploying 5G networks. Cloud-radio access network (C-RAN) architecture is employed in conjunction with microwave photonics techniques as a promising solution to generate and transmit millimeter wave (mmW) signals in the next generation of mobile communications. Radio over fiber (RoF) has been demonstrated as a good option to face the challenge of mmW wireless distribution, due to long transmission distance, large bandwidth and immunity to electromagnetic interference, as some of the main advantages. Moreover, this technology can be extended with free-space optical (FSO) communications in Radio over FSO systems (RoFSO) as wireless networks. In this Thesis, mmW signals are photonically generated by carrier suppressed double sideband (CS-DSB) external modulation and distributed over hybrid RoF/FSO fronthaul links. Moreover, multiple generated signals allow reconfigurable distribution in wavelength-division multiplexed (WDM) channels from a central office to the base stations, and the impact of turbulent FSO channels on photonically generated mmW signals has been evaluated in terms of power signal fluctuations and phase noise. A directly modulated laser (DML) is proposed as a major solution for signal transmission over hybrid optical links employing optical frequency multiplication scheme, i.e. CS-DSB, for mmW signal generation. Moreover, local and remote photonic mmW signal generation schemes are theoretically and experimentally evaluated and compared for practical deployment in C-RAN fronthaul network while the impact of harmonic and intermodulation distortion on data transmission is also experimentally studied. Furthermore, for the sake of obtaining the DML usability in terms of bandwidth, theoretical and experimental evaluation of the effect of fiber dispersion and chirp over different M-quadrature amplitude modulation (QAM) signals bandwidth is also presented. Another data transmission approach based on the cascade of two external modulators is also employed in the Thesis. In this case, the experimental demonstration of optical signal generation employing CS-DSB and signal transmission over hybrid fiber and FSO fronthaul network is completed with a seamless antenna link leading to successful transmission of 64/256-QAM 5G signals. The CS-DSB and DSB schemes are also investigated for the sake of comparison in terms of robustness against fiber chromatic dispersion-induced fading. Furthermore, experimental evaluation of the impact of turbulent FSO links on photonically generated mmW signals with different thermal distributions has been performed and data signal degradation has been quantified according to the turbulence conditions. As final demonstrators, the Thesis includes a full-duplex transmission system employing 39 GHz downlink (DL) and 37 GHz uplink (UL) 5G signals over hybrid links; and 60 GHz (DL) and 25 GHz (UL) OFDM LTE signal transmission over an heterogeneous optical fronthaul infrastructure consisting of 10 km optical fiber, 100 m FSO channel and 2 m wireless radio link.I would like to acknowledge the financial support given by Research Excellence Award Programme GVA PROMETEO 2017/103 Future Microwave Photonics and European Network for High Performance Integrated Microwave Photonics (EUIMWP) CA16220.Vallejo Castro, L. (2022). Photonic Millimeter Wave Signal Generation and Transmission Over Hybrid Links in 5G Communication Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19025
    corecore