4,402 research outputs found

    A Geometric Approach to Pairwise Bayesian Alignment of Functional Data Using Importance Sampling

    Full text link
    We present a Bayesian model for pairwise nonlinear registration of functional data. We use the Riemannian geometry of the space of warping functions to define appropriate prior distributions and sample from the posterior using importance sampling. A simple square-root transformation is used to simplify the geometry of the space of warping functions, which allows for computation of sample statistics, such as the mean and median, and a fast implementation of a kk-means clustering algorithm. These tools allow for efficient posterior inference, where multiple modes of the posterior distribution corresponding to multiple plausible alignments of the given functions are found. We also show pointwise 95%95\% credible intervals to assess the uncertainty of the alignment in different clusters. We validate this model using simulations and present multiple examples on real data from different application domains including biometrics and medicine

    Methods for Optimal Model Fitting and Sensor Calibration

    Get PDF
    The problem of fitting models to measured data has been studied extensively, not least in the field of computer vision. A central problem in this field is the difficulty in reliably find corresponding structures and points in different images, resulting in outlier data. This thesis presents theoretical results improving the understanding of the connection between model parameter estimation and possible outlier-inlier partitions of data point sets. Using these results a multitude of applications can be analyzed in respects to optimal outlier inlier partitions, optimal norm fitting, and not least in truncated norm sense. Practical polynomial time optimal solvers are derived for several applications, including but not limited to multi-view triangulation and image registration. In this thesis the problem of sensor network self calibration is investigated. Sensor networks play an increasingly important role with the increased availability of mobile, antenna equipped, devices. The application areas can be extended with knowledge of the different sensors relative or absolute positions. We study this problem in the context of bipartite sensor networks. We identify requirements of solvability for several configurations, and present a framework for how such problems can be approached. Further we utilize this framework to derive several solvers, which we show in both synthetic and real examples functions as desired. In both these types of model estimation, as well as in the classical random samples based approaches minimal cases of polynomial systems play a central role. A majority of the problems tackled in this thesis will have solvers based on recent techniques pertaining to action matrix solvers. New application specific polynomial equation sets are constructed and elimination templates designed for them. In addition a general improvement to the method is suggested for a large class of polynomial systems. The method is shown to improve the computational speed by significant reductions in the size of elimination templates as well as in the size of the action matrices. In addition the methodology on average improves the numerical stability of the solvers

    The Cauchy-Lagrangian method for numerical analysis of Euler flow

    Full text link
    A novel semi-Lagrangian method is introduced to solve numerically the Euler equation for ideal incompressible flow in arbitrary space dimension. It exploits the time-analyticity of fluid particle trajectories and requires, in principle, only limited spatial smoothness of the initial data. Efficient generation of high-order time-Taylor coefficients is made possible by a recurrence relation that follows from the Cauchy invariants formulation of the Euler equation (Zheligovsky & Frisch, J. Fluid Mech. 2014, 749, 404-430). Truncated time-Taylor series of very high order allow the use of time steps vastly exceeding the Courant-Friedrichs-Lewy limit, without compromising the accuracy of the solution. Tests performed on the two-dimensional Euler equation indicate that the Cauchy-Lagrangian method is more - and occasionally much more - efficient and less prone to instability than Eulerian Runge-Kutta methods, and less prone to rapid growth of rounding errors than the high-order Eulerian time-Taylor algorithm. We also develop tools of analysis adapted to the Cauchy-Lagrangian method, such as the monitoring of the radius of convergence of the time-Taylor series. Certain other fluid equations can be handled similarly.Comment: 30 pp., 13 figures, 45 references. Minor revision. In press in Journal of Scientific Computin

    Knot selection by boosting techniques

    Get PDF
    A novel concept for estimating smooth functions by selection techniques based on boosting is developed. It is suggested to put radial basis functions with different spreads at each knot and to do selection and estimation simultaneously by a componentwise boosting algorithm. The methodology of various other smoothing and knot selection procedures (e.g. stepwise selection) is summarized. They are compared to the proposed approach by extensive simulations for various unidimensional settings, including varying spatial variation and heteroskedasticity, as well as on a real world data example. Finally, an extension of the proposed method to surface fitting is evaluated numerically on both, simulation and real data. The proposed knot selection technique is shown to be a strong competitor to existing methods for knot selection

    Smooth backfitting in generalized additive models

    Full text link
    Generalized additive models have been popular among statisticians and data analysts in multivariate nonparametric regression with non-Gaussian responses including binary and count data. In this paper, a new likelihood approach for fitting generalized additive models is proposed. It aims to maximize a smoothed likelihood. The additive functions are estimated by solving a system of nonlinear integral equations. An iterative algorithm based on smooth backfitting is developed from the Newton--Kantorovich theorem. Asymptotic properties of the estimator and convergence of the algorithm are discussed. It is shown that our proposal based on local linear fit achieves the same bias and variance as the oracle estimator that uses knowledge of the other components. Numerical comparison with the recently proposed two-stage estimator [Ann. Statist. 32 (2004) 2412--2443] is also made.Comment: Published in at http://dx.doi.org/10.1214/009053607000000596 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Scan-based immersed isogeometric analysis

    Get PDF
    Scan-based simulations contain innate topologically complex three-dimensional geometries, represented by large data sets in formats which are not directly suitable for analysis. Consequently, performing high-fidelity scan-based simulations at practical computational costs is still very challenging. The main objective of this dissertation is to develop an efficient and robust scan-based simulation strategy by acquiring a profound understanding of three prominent challenges in scan-based IGA, viz.: i) balancing the accuracy and computational effort associated with numerical integration; ii) the preservation of topology in the spline-based segmentation procedure; and iii) the control of accuracy using error estimation and adaptivity techniques. In three-dimensional immersed isogeometric simulations, the computational effort associated with integration can be the critical component. A myriad of integration strategies has been proposed over the past years to ameliorate the difficulties associated with integration, but a general optimal integration framework that suits a broad class of engineering problems is not yet available. In this dissertation we provide a thorough investigation of the accuracy and computational effort of the octree integration technique. We quantify the contribution of the integration error using the theoretical basis provided by Strang’s first lemma. Based on this study we propose an error-estimate-based adaptive integration procedure for immersed IGA. To exploit the advantageous properties of IGA in a scan-based setting, it is important to extract a smooth geometry. This can be established by convoluting the voxel data using B-splines, but this can induce problematic topological changes when features with a size similar to that of the voxels are encountered. This dissertation presents a topology-preserving segmentation procedure using truncated hierarchical (TH)B-splines. A moving-window-based topological anomaly detection algorithm is proposed to identify regions in which (TH)B-spline refinements must be performed. The criterion to identify topological anomalies is based on the Euler characteristic, giving it the capability to distinguish between topological and shape changes. A Fourier analysis is presented to explain the effectiveness of the developed procedure. An additional computational challenge in the context of immersed IGA is the construction of optimal approximations using locally refined splines. For scan-based volumetric domains, hierarchical splines are particularly suitable, as they optimally leverage the advantages offered by the availability of a geometrically simple background mesh. Although truncated hierarchical B-splines have been successfully applied in the context of IGA, their application in the immersed setting is largely unexplored. In this dissertation we propose a computational strategy for the application of error estimation-based mesh adaptivity for stabilized immersed IGA. The conducted analyses and developed computational techniques for scan-based immersed IGA are interrelated, and together constitute a significant improvement in the efficiency and robustness of the analysis paradigm. In combination with other state-of-the-art developments regarding immersed FEM/IGA (\emph{e.g.}, iterative solution techniques, parallel computing), the research in this thesis opens the doors to scan-based simulations with more sophisticated physical behavior, geometries of increased complexity, and larger scan-data sizes.Scan-based simulations contain innate topologically complex three-dimensional geometries, represented by large data sets in formats which are not directly suitable for analysis. Consequently, performing high-fidelity scan-based simulations at practical computational costs is still very challenging. The main objective of this dissertation is to develop an efficient and robust scan-based simulation strategy by acquiring a profound understanding of three prominent challenges in scan-based IGA, viz.: i) balancing the accuracy and computational effort associated with numerical integration; ii) the preservation of topology in the spline-based segmentation procedure; and iii) the control of accuracy using error estimation and adaptivity techniques. In three-dimensional immersed isogeometric simulations, the computational effort associated with integration can be the critical component. A myriad of integration strategies has been proposed over the past years to ameliorate the difficulties associated with integration, but a general optimal integration framework that suits a broad class of engineering problems is not yet available. In this dissertation we provide a thorough investigation of the accuracy and computational effort of the octree integration technique. We quantify the contribution of the integration error using the theoretical basis provided by Strang’s first lemma. Based on this study we propose an error-estimate-based adaptive integration procedure for immersed IGA. To exploit the advantageous properties of IGA in a scan-based setting, it is important to extract a smooth geometry. This can be established by convoluting the voxel data using B-splines, but this can induce problematic topological changes when features with a size similar to that of the voxels are encountered. This dissertation presents a topology-preserving segmentation procedure using truncated hierarchical (TH)B-splines. A moving-window-based topological anomaly detection algorithm is proposed to identify regions in which (TH)B-spline refinements must be performed. The criterion to identify topological anomalies is based on the Euler characteristic, giving it the capability to distinguish between topological and shape changes. A Fourier analysis is presented to explain the effectiveness of the developed procedure. An additional computational challenge in the context of immersed IGA is the construction of optimal approximations using locally refined splines. For scan-based volumetric domains, hierarchical splines are particularly suitable, as they optimally leverage the advantages offered by the availability of a geometrically simple background mesh. Although truncated hierarchical B-splines have been successfully applied in the context of IGA, their application in the immersed setting is largely unexplored. In this dissertation we propose a computational strategy for the application of error estimation-based mesh adaptivity for stabilized immersed IGA. The conducted analyses and developed computational techniques for scan-based immersed IGA are interrelated, and together constitute a significant improvement in the efficiency and robustness of the analysis paradigm. In combination with other state-of-the-art developments regarding immersed FEM/IGA (\emph{e.g.}, iterative solution techniques, parallel computing), the research in this thesis opens the doors to scan-based simulations with more sophisticated physical behavior, geometries of increased complexity, and larger scan-data sizes

    Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines

    Full text link
    We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the incorporation of appropriately scaled stabilization and boundary terms. Element-wise error indicators are elaborated for the Laplace and Stokes problems, and a THB-spline-based local mesh refinement strategy is proposed. The error estimation .and adaptivity procedure is applied to a series of benchmark problems, demonstrating the suitability of the technique for a range of smooth and non-smooth problems. The adaptivity strategy is also integrated in a scan-based analysis workflow, capable of generating reliable, error-controlled, results from scan data, without the need for extensive user interactions or interventions.Comment: Submitted to Journal of Mechanic
    • …
    corecore