323 research outputs found

    Gathering Anonymous, Oblivious Robots on a Grid

    Full text link
    We consider a swarm of nn autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robots is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs O(n2)\mathcal{O}(n^2) rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous FSYNC\mathcal{FSYNC} model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and "flags" to communicate these states to neighbors in viewing range. They gather in time O(n)\mathcal{O}(n). In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), "flags" and states. We prove its correctness and an O(n2)\mathcal{O}(n^2) time bound in the fully synchronous FSYNC\mathcal{FSYNC} time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a 2×22\times 2 square, because in FSYNC\mathcal{FSYNC} such configurations cannot be solved

    Optimal deterministic ring exploration with oblivious asynchronous robots

    Get PDF
    We consider the problem of exploring an anonymous unoriented ring of size nn by kk identical, oblivious, asynchronous mobile robots, that are unable to communicate, yet have the ability to sense their environment and take decisions based on their local view. Previous works in this weak scenario prove that kk must not divide nn for a deterministic solution to exist. Also, it is known that the minimum number of robots (either deterministic or probabilistic) to explore a ring of size nn is 4. An upper bound of 17 robots holds in the deterministic case while 4 probabilistic robots are sufficient. In this paper, we close the complexity gap in the deterministic setting, by proving that no deterministic exploration is feasible with less than five robots whenever the size of the ring is even, and that five robots are sufficient for any nn that is coprime with five. Our protocol completes exploration in O(n) robot moves, which is also optimal

    Optimal Probabilistic Ring Exploration by Asynchronous Oblivious Robots

    Get PDF
    We consider a team of kk identical, oblivious, asynchronous mobile robots that are able to sense (\emph{i.e.}, view) their environment, yet are unable to communicate, and evolve on a constrained path. Previous results in this weak scenario show that initial symmetry yields high lower bounds when problems are to be solved by \emph{deterministic} robots. In this paper, we initiate research on probabilistic bounds and solutions in this context, and focus on the \emph{exploration} problem of anonymous unoriented rings of any size. It is known that Θ(log⁥n)\Theta(\log n) robots are necessary and sufficient to solve the problem with kk deterministic robots, provided that kk and nn are coprime. By contrast, we show that \emph{four} identical probabilistic robots are necessary and sufficient to solve the same problem, also removing the coprime constraint. Our positive results are constructive

    Gathering on Rings for Myopic Asynchronous Robots With Lights

    Get PDF
    We investigate gathering algorithms for asynchronous autonomous mobile robots moving in uniform ring-shaped networks. Different from most work using the Look-Compute-Move (LCM) model, we assume that robots have limited visibility and lights. That is, robots can observe nodes only within a certain fixed distance, and emit a color from a set of constant number of colors. We consider gathering algorithms depending on two parameters related to the initial configuration: M_{init}, which denotes the number of nodes between two border nodes, and O_{init}, which denotes the number of nodes hosting robots between two border nodes. In both cases, a border node is a node hosting one or more robots that cannot see other robots on at least one side. Our main contribution is to prove that, if M_{init} or O_{init} is odd, gathering is always feasible with three or four colors. The proposed algorithms do not require additional assumptions, such as knowledge of the number of robots, multiplicity detection capabilities, or the assumption of towerless initial configurations. These results demonstrate the power of lights to achieve gathering of robots with limited visibility

    Gathering over Meeting Nodes in Infinite Grid

    Full text link
    The gathering over meeting nodes problem asks the robots to gather at one of the pre-defined meeting nodes. The robots are deployed on the nodes of an anonymous two-dimensional infinite grid which has a subset of nodes marked as meeting nodes. Robots are identical, autonomous, anonymous and oblivious. They operate under an asynchronous scheduler. They do not have any agreement on a global coordinate system. All the initial configurations for which the problem is deterministically unsolvable have been characterized. A deterministic distributed algorithm has been proposed to solve the problem for the remaining configurations. The efficiency of the proposed algorithm is studied in terms of the number of moves required for gathering. A lower bound concerning the total number of moves required to solve the gathering problem has been derived

    Synchronous Robots vs Asynchronous Lights-Enhanced Robots on Graphs

    Get PDF
    AbstractIn this paper, we consider the distributed setting of computational mobile entities, called robots, that have to perform tasks without global coordination. Depending on the environment as well as on the robots' capabilities, tasks might be accomplished or not.In particular, we focus on the well-known scenario where the robots reside on the nodes of a graph and operate in Look-Compute-Move cycles. In one cycle, a robot perceives the current configuration in terms of robots positions (Look), decides whether to move toward some edge of the graph (Compute), and in the positive case it performs an instantaneous move along the computed edge (Move).We then compare two basic models: in the first model robots are fully synchronous, while in the second one robots are asynchronous and lights-enhanced, that is, each robot is equipped with a constant number of lights visible to all other robots. The question whether one model is more powerful than the other in terms of computable tasks has been considered in [Das et al., Int.'l Conf. on Distributed Computing Systems, 2012] but for robots moving on the Euclidean plane rather than on a graph.We provide two different tasks, and show that on graphs one task can be solved in the fully synchronous model but not in the asynchronous lights-enhanced model, while for the other task the converse holds. Hence we can assert that the fully synchronous model and the asynchronous lights-enhanced model are incomparable on graphs. This opens challenging directions in order to understand which peculiarities make the models so different
    • 

    corecore