2,363 research outputs found

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    Optimal Partitioned Cyclic Difference Packings for Frequency Hopping and Code Synchronization

    Full text link
    Optimal partitioned cyclic difference packings (PCDPs) are shown to give rise to optimal frequency-hopping sequences and optimal comma-free codes. New constructions for PCDPs, based on almost difference sets and cyclic difference matrices, are given. These produce new infinite families of optimal PCDPs (and hence optimal frequency-hopping sequences and optimal comma-free codes). The existence problem for optimal PCDPs in Z3m{\mathbb Z}_{3m}, with mm base blocks of size three, is also solved for all m≢8,16(mod24)m\not\equiv 8,16\pmod{24}.Comment: to appear in IEEE Transactions on Information Theor
    • …
    corecore