317 research outputs found

    Resource management for next generation multi-service mobile network

    Get PDF

    FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks

    Full text link
    [EN] Opportunistic networks are becoming a solution to provide communication support in areas with overloaded cellular networks, and in scenarios where a fixed infrastructure is not available, as in remote and developing regions. A critical issue, which still requires a satisfactory solution, is the design of an efficient data delivery solution trading off delivery efficiency, delay, and cost. To tackle this problem, most researchers have used either the network state or node mobility as a forwarding criterion. Solutions based on social behaviour have recently been considered as a promising alternative. Following the philosophy from this new category of protocols, in this work, we present our ¿FriendShip and Acquaintanceship Forwarding¿ (FSF) protocol, a routing protocol that makes its routing decisions considering the social ties between the nodes and both the selfishness and the device resources levels of the candidate node for message relaying. When a contact opportunity arises, FSF first classifies the social ties between the message destination and the candidate to relay. Then, by using logistic functions, FSF assesses the relay node selfishness to consider those cases in which the relay node is socially selfish. To consider those cases in which the relay node does not accept receipt of the message because its device has resource constraints at that moment, FSF looks at the resource levels of the relay node. By using the ONE simulator to carry out trace-driven simulation experiments, we find that, when accounting for selfishness on routing decisions, our FSF algorithm outperforms previously proposed schemes, by increasing the delivery ratio up to 20%, with the additional advantage of introducing a lower number of forwarding events. We also find that the chosen buffer management algorithm can become a critical element to improve network performance in scenarios with selfish nodes.This work was partially supported by the "Camilo Batista de Souza/Programa Doutorado-sanduiche no Exterior (PDSE)/Processo 88881.133931/2016-01" and by the Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018, Spain, under Grant RTI2018-096384-B-I00".Souza, C.; Mota, E.; Soares, D.; Manzoni, P.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM.; Hernández-Orallo, E. (2019). FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks. Sensors. 19(10):1-26. https://doi.org/10.3390/s19102374S1261910Trifunovic, S., Kouyoumdjieva, S. T., Distl, B., Pajevic, L., Karlsson, G., & Plattner, B. (2017). A Decade of Research in Opportunistic Networks: Challenges, Relevance, and Future Directions. IEEE Communications Magazine, 55(1), 168-173. doi:10.1109/mcom.2017.1500527cmLu, X., Lio, P., & Hui, P. (2016). Distance-Based Opportunistic Mobile Data Offloading. Sensors, 16(6), 878. doi:10.3390/s16060878Zeng, F., Zhao, N., & Li, W. (2017). Effective Social Relationship Measurement and Cluster Based Routing in Mobile Opportunistic Networks. Sensors, 17(5), 1109. doi:10.3390/s17051109Khabbaz, M. J., Assi, C. M., & Fawaz, W. F. (2012). Disruption-Tolerant Networking: A Comprehensive Survey on Recent Developments and Persisting Challenges. IEEE Communications Surveys & Tutorials, 14(2), 607-640. doi:10.1109/surv.2011.041911.00093Miao, J., Hasan, O., Mokhtar, S. B., Brunie, L., & Yim, K. (2013). An investigation on the unwillingness of nodes to participate in mobile delay tolerant network routing. International Journal of Information Management, 33(2), 252-262. doi:10.1016/j.ijinfomgt.2012.11.001CRAWDAD Dataset Uoi/Haggle (v. 2016-08-28): Derived from Cambridge/Haggle (v. 2009-05-29)https://crawdad.org/uoi/haggle/20160828Eagle, N., Pentland, A., & Lazer, D. (2009). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36), 15274-15278. doi:10.1073/pnas.0900282106Tsai, T.-C., & Chan, H.-H. (2015). NCCU Trace: social-network-aware mobility trace. IEEE Communications Magazine, 53(10), 144-149. doi:10.1109/mcom.2015.7295476Hui, P., Crowcroft, J., & Yoneki, E. (2011). BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks. IEEE Transactions on Mobile Computing, 10(11), 1576-1589. doi:10.1109/tmc.2010.246Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19-20. doi:10.1145/961268.961272Cao, Y., & Sun, Z. (2013). Routing in Delay/Disruption Tolerant Networks: A Taxonomy, Survey and Challenges. IEEE Communications Surveys & Tutorials, 15(2), 654-677. doi:10.1109/surv.2012.042512.00053Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A Survey of Social-Based Routing in Delay Tolerant Networks: Positive and Negative Social Effects. IEEE Communications Surveys & Tutorials, 15(1), 387-401. doi:10.1109/surv.2012.032612.00004Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data MULEs: modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2-3), 215-233. doi:10.1016/s1570-8705(03)00003-9Burns, B., Brock, O., & Levine, B. N. (2008). MORA routing and capacity building in disruption-tolerant networks. Ad Hoc Networks, 6(4), 600-620. doi:10.1016/j.adhoc.2007.05.002Shaghaghian, S., & Coates, M. (2015). Optimal Forwarding in Opportunistic Delay Tolerant Networks With Meeting Rate Estimations. IEEE Transactions on Signal and Information Processing over Networks, 1(2), 104-116. doi:10.1109/tsipn.2015.2452811Li, L., Qin, Y., & Zhong, X. (2016). A Novel Routing Scheme for Resource-Constraint Opportunistic Networks: A Cooperative Multiplayer Bargaining Game Approach. IEEE Transactions on Vehicular Technology, 65(8), 6547-6561. doi:10.1109/tvt.2015.2476703Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking. ACM SIGPLAN Notices, 37(10), 96-107. doi:10.1145/605432.605408Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient Routing in Intermittently Connected Mobile Networks: The Single-Copy Case. IEEE/ACM Transactions on Networking, 16(1), 63-76. doi:10.1109/tnet.2007.897962Zhang, L., Wang, X., Lu, J., Ren, M., Duan, Z., & Cai, Z. (2014). A novel contact prediction-based routing scheme for DTNs. Transactions on Emerging Telecommunications Technologies, 28(1), e2889. doi:10.1002/ett.2889Okasha, S. (2005). Altruism, Group Selection and Correlated Interaction. The British Journal for the Philosophy of Science, 56(4), 703-725. doi:10.1093/bjps/axi143Hernandez-Orallo, E., Olmos, M. D. S., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 14(6), 1162-1175. doi:10.1109/tmc.2014.234362

    Effective and Efficient Communication and Collaboration in Participatory Environments

    Get PDF
    Participatory environments pose significant challenges to deploying real applications. This dissertation investigates exploitation of opportunistic contacts to enable effective and efficient data transfers in challenged participatory environments. There are three main contributions in this dissertation: 1. A novel scheme for predicting contact volume during an opportunistic contact (PCV); 2. A method for computing paths with combined optimal stability and capacity (COSC) in opportunistic networks; and 3. An algorithm for mobility and orientation estimation in mobile environments (MOEME). The proposed novel scheme called PCV predicts contact volume in soft real-time. The scheme employs initial position and velocity vectors of nodes along with the data rate profile of the environment. PCV enables efficient and reliable data transfers between opportunistically meeting nodes. The scheme that exploits capacity and path stability of opportunistic networks is based on PCV for estimating individual link costs on a path. The total path cost is merged with a stability cost to strike a tradeoff for maximizing data transfers in the entire participatory environment. A polynomial time dynamic programming algorithm is proposed to compute paths of optimum cost. We propose another novel scheme for Real-time Mobility and Orientation Estimation for Mobile Environments (MOEME), as prediction of user movement paves way for efficient data transfers, resource allocation and event scheduling in participatory environments. MOEME employs the concept of temporal distances and uses logistic regression to make real time estimations about user movement. MOEME relies only on opportunistic message exchange and is fully distributed, scalable, and requires neither a central infrastructure nor Global Positioning System. Indeed, accurate prediction of contact volume, path capacity and stability and user movement can improve performance of deployments. However, existing schemes for such estimations make use of preconceived patterns or contact time distributions that may not be applicable in uncertain environments. Such patterns may not exist, or are difficult to recognize in soft-real time, in open environments such as parks, malls, or streets

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    Minimum-Delay Service Provisioning in Opportunistic Networks

    Get PDF
    Opportunistic networks are (ad hoc) networks created dynamically by exploiting contacts between pairs of mobile devices that come within communication range. This networking paradigm overcomes main limitations of conventional MANETs, related to the fact that, due to mobility and energy conservation issues, it is often not practical to maintain connected multihop paths among nodes. While forwarding in opportunistic networking has been explored, investigations into asynchronous service provisioning are unique contributions of this paper. Mobile devices are typically heterogeneous, possess disparate physical resources, and can provide a variety of services. During opportunistic contacts, the pairing peers can cooperatively provide (avail of) its (other peer\u27s) services. This service provisioning paradigm is a key feature of the emerging opportunistic computing paradigm. We develop an analytical model to study the behaviors of service seeking nodes (seekers) and service providing nodes (providers) that spawn and execute service requests, respectively. The model considers the case in which seekers can spawn parallel executions on multiple providers for any given request, and determines: i) the delays at different stages of service provisioning; and ii) the optimal number of parallel executions that minimizes the expected execution time without saturating providers\u27 resources. The analytical model is validated through simulations, and exploited to investigate the performance of service provisioning over a wide range of parameters

    Hybrid Routing in Delay Tolerant Networks

    Get PDF
    This work addresses the integration of today\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Improving Link Prediction in Intermittently Connected Wireless Networks by Considering Link and Proximity Stabilities

    Full text link
    Several works have outlined the fact that the mobility in intermittently connected wireless networks is strongly governed by human behaviors as they are basically human-centered. It has been shown that the users' moves can be correlated and that the social ties shared by the users highly impact their mobility patterns and hence the network structure. Tracking these correlations and measuring the strength of social ties have led us to propose an efficient distributed tensor-based link prediction technique. In fact, we are convinced that the feedback provided by such a prediction mechanism can enhance communication protocols such as opportunistic routing protocols. In this paper, we aim to bring out that measuring the stabilities of the link and the proximity at two hops can improve the efficiency of the proposed link prediction technique. To quantify these two parameters, we propose an entropy estimator in order to measure the two stability aspects over successive time periods. Then, we join these entropy estimations to the tensor-based link prediction framework by designing new prediction metrics. To assess the contribution of these entropy estimations in the enhancement of tensor-based link prediction efficiency, we perform prediction on two real traces. Our simulation results show that by exploiting the information corresponding to the link stability and/or to the proximity stability, the performance of the tensor-based link prediction technique is improved. Moreover, the results attest that our proposal's ability to outperform other well-known prediction metrics.Comment: Published in the proceedings of the 13th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco, United States, 201
    corecore