64,119 research outputs found

    Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach

    Get PDF
    This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant 2009I0016

    Comparisons of nonlinear estimators for wastewater treatment plants

    Get PDF
    This paper deals with five existing nonlinear estimators (filters), which include Extended Kalman Filter (EKF), Extended H-infinity Filter (EHF), State Dependent Filter (SDF), State Dependent H-Infinity Filter (SDHF) and Unscented Kalman Filter (UKF) that are formulated and implemented to estimate unmeasured states of a typical biological wastewater system. The performance of these five estimators of different complexities, behaviour and advantages are demonstrated and compared via nonlinear simulations. This study shows promising application of UKF for monitoring and control of the process variables, which are not directly measurable

    On-chip non-dispersive infrared CO2 sensor based on an integrating cylinder

    Get PDF
    In this paper, we propose a novel, miniaturized non-dispersive infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor has a simple structure, consisting of a hollow metallic cylindrical cavity along with access waveguides. A detailed analysis of the proposed sensor is presented. Simulation with 3D ray tracing shows that an integrating cylinder with 4 mm diameter gives an equivalent optical path length of 3 . 5 cm. The sensor is fabricated using Deep Reactive Ion Etching (DRIE) and wafer bonding. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼100 ppm. The response time of the sensor is only ∼2.8 s, due to its small footprint. The use of DRIE-based waveguide structures enables mass fabrication, as well as the potential co-integration of flip-chip integrated midIR light-emitting diodes (LEDs) and photodetectors, resulting in a compact, low-power, and low-cost NDIR CO2 sensor
    corecore