36,091 research outputs found

    Real-Time analysis and visualization for single-molecule based super-resolution microscopy

    Get PDF
    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-resolution microscopy

    A Novel Gaussian Extrapolation Approach for 2D Gel Electrophoresis Saturated Protein Spots

    Get PDF
    Analysis of images obtained from two-dimensional gel electrophoresis (2D-GE) is a topic of utmost importance in bioinformatics research, since commercial and academic software available currently has proven to be neither completely effective nor fully automatic, often requiring manual revision and refinement of computer generated matches. In this work, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, the algorithm reveals overexposed areas, where spots may be truncated, and plateau regions caused by smeared and overlapping spots. Next, it reconstructs the correct distribution of pixel values in these overexposed areas and plateau regions, using a two-dimensional least-squares fitting based on a generalized Gaussian distribution. Pixel correction in saturated and smeared spots allows more accurate quantification, providing more reliable image analysis results. The method is validated for processing highly exposed 2D-GE images, comparing reconstructed spots with the corresponding non-saturated image, demonstrating that the algorithm enables correct spot quantificatio

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Frequency Analysis of Gradient Estimators in Volume Rendering

    Get PDF
    Gradient information is used in volume rendering to classify and color samples along a ray. In this paper, we present an analysis of the theoretically ideal gradient estimator and compare it to some commonly used gradient estimators. A new method is presented to calculate the gradient at arbitrary sample positions, using the derivative of the interpolation filter as the basis for the new gradient filter. As an example, we will discuss the use of the derivative of the cubic spline. Comparisons with several other methods are demonstrated. Computational efficiency can be realized since parts of the interpolation computation can be leveraged in the gradient estimatio

    Development of a synthetic phantom for the selection of optimal scanning parameters in CAD-CT colonography

    Get PDF
    The aim of this paper is to present the development of a synthetic phantom that can be used for the selection of optimal scanning parameters in computed tomography (CT) colonography. In this paper we attempt to evaluate the influence of the main scanning parameters including slice thickness, reconstruction interval, field of view, table speed and radiation dose on the overall performance of a computer aided detection (CAD)–CTC system. From these parameters the radiation dose received a special attention, as the major problem associated with CTC is the patient exposure to significant levels of ionising radiation. To examine the influence of the scanning parameters we performed 51 CT scans where the spread of scanning parameters was divided into seven different protocols. A large number of experimental tests were performed and the results analysed. The results show that automatic polyp detection is feasible even in cases when the CAD–CTC system was applied to low dose CT data acquired with the following protocol: 13 mAs/rotation with collimation of 1.5 mm × 16 mm, slice thickness of 3.0 mm, reconstruction interval of 1.5 mm, table speed of 30 mm per rotation. The CT phantom data acquired using this protocol was analysed by an automated CAD–CTC system and the experimental results indicate that our system identified all clinically significant polyps (i.e. larger than 5 mm)
    corecore