49,688 research outputs found

    Data Exchange Problem with Helpers

    Full text link
    In this paper we construct a deterministic polynomial time algorithm for the problem where a set of users is interested in gaining access to a common file, but where each has only partial knowledge of the file. We further assume the existence of another set of terminals in the system, called helpers, who are not interested in the common file, but who are willing to help the users. Given that the collective information of all the terminals is sufficient to allow recovery of the entire file, the goal is to minimize the (weighted) sum of bits that these terminals need to exchange over a noiseless public channel in order achieve this goal. Based on established connections to the multi-terminal secrecy problem, our algorithm also implies a polynomial-time method for constructing the largest shared secret key in the presence of an eavesdropper. We consider the following side-information settings: (i) side-information in the form of uncoded packets of the file, where the terminals' side-information consists of subsets of the file; (ii) side-information in the form of linearly correlated packets, where the terminals have access to linear combinations of the file packets; and (iii) the general setting where the the terminals' side-information has an arbitrary (i.i.d.) correlation structure. We provide a polynomial-time algorithm (in the number of terminals) that finds the optimal rate allocations for these terminals, and then determines an explicit optimal transmission scheme for cases (i) and (ii)

    Non-Cooperative Scheduling of Multiple Bag-of-Task Applications

    Get PDF
    Multiple applications that execute concurrently on heterogeneous platforms compete for CPU and network resources. In this paper we analyze the behavior of KK non-cooperative schedulers using the optimal strategy that maximize their efficiency while fairness is ensured at a system level ignoring applications characteristics. We limit our study to simple single-level master-worker platforms and to the case where each scheduler is in charge of a single application consisting of a large number of independent tasks. The tasks of a given application all have the same computation and communication requirements, but these requirements can vary from one application to another. In this context, we assume that each scheduler aims at maximizing its throughput. We give closed-form formula of the equilibrium reached by such a system and study its performance. We characterize the situations where this Nash equilibrium is optimal (in the Pareto sense) and show that even though no catastrophic situation (Braess-like paradox) can occur, such an equilibrium can be arbitrarily bad for any classical performance measure

    On Resource Allocation in Fading Multiple Access Channels - An Efficient Approximate Projection Approach

    Full text link
    We consider the problem of rate and power allocation in a multiple-access channel. Our objective is to obtain rate and power allocation policies that maximize a general concave utility function of average transmission rates on the information theoretic capacity region of the multiple-access channel. Our policies does not require queue-length information. We consider several different scenarios. First, we address the utility maximization problem in a nonfading channel to obtain the optimal operating rates, and present an iterative gradient projection algorithm that uses approximate projection. By exploiting the polymatroid structure of the capacity region, we show that the approximate projection can be implemented in time polynomial in the number of users. Second, we consider resource allocation in a fading channel. Optimal rate and power allocation policies are presented for the case that power control is possible and channel statistics are available. For the case that transmission power is fixed and channel statistics are unknown, we propose a greedy rate allocation policy and provide bounds on the performance difference of this policy and the optimal policy in terms of channel variations and structure of the utility function. We present numerical results that demonstrate superior convergence rate performance for the greedy policy compared to queue-length based policies. In order to reduce the computational complexity of the greedy policy, we present approximate rate allocation policies which track the greedy policy within a certain neighborhood that is characterized in terms of the speed of fading.Comment: 32 pages, Submitted to IEEE Trans. on Information Theor

    Derandomization of Online Assignment Algorithms for Dynamic Graphs

    Full text link
    This paper analyzes different online algorithms for the problem of assigning weights to edges in a fully-connected bipartite graph that minimizes the overall cost while satisfying constraints. Edges in this graph may disappear and reappear over time. Performance of these algorithms is measured using simulations. This paper also attempts to derandomize the randomized online algorithm for this problem
    • …
    corecore