17 research outputs found

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    Unmanned aerial vehicles (UAVs) for wireless communication and networks : potentials and design challenges

    Get PDF
    Unmanned aerial vehicles (UAVs) are mostly considered by the military for surveillance and reconnaissance operations, and by hobbyists for aerial photography. However, in recent years, the UAV operations have been extended for civilian and commercial purposes due to their agile and cost-effective deployment. UAVs appear to be more prolific platforms to enable wireless communication due to their better line-of-sight (LOS) channel conditions as compared with the fixed base stations (BSs) in terrestrial communication which suffer from severe path loss, shadowing, and multipath fading in more challenging propagation environments. In UAV-enabled wireless communications, the UAV can either act as a complementary aerial BS to provide on-demand communication or as an aerial user equipment (UE) which is operated by the existing cellular network. Several challenges exist in the design of UAV communications which include but not limited to channel modeling, optimal deployment, interference generation, performance analysis, limited on-board battery lifetime, trajectory optimization, and unavailability of regulations and standards which are specific for UAV communication and networking. This thesis particularly investigates some important design challenges for safe and reliable functionalities of UAV for wireless communication and networking. UAV communication has its own distinctive channel characteristics compared to the widely used cellular or satellite systems. However, several challenges exist in UAV channel modeling. For example, the propagation characteristics of UAV channels are under explored for spatial and temporal variations in non-stationary channels. Therefore, first and foremost, this thesis provides an extensive review of the measurement methods proposed for UAV channel modeling and discusses channel modeling efforts for air-to-ground and air-to-air channels. Furthermore, knowledge-gaps are identified to realize accurate UAV channel models. The efficient deployment strategy is imperative to compensate the adverse impact of interference on the coverage area performance of multiple UAVs. As a result, this thesis proposes an optimal deployment strategy for multiple UAVs in presence of downlink co-channel interference in the worst-case scenario. In particular, this work presents coordinated multi-UAV strategy in two schemes. In the first scheme, symmetric placement of UAVs is assumed at a common optimal altitude and transmit power. In the second scheme, asymmetric deployment of UAVs with different altitudes and transmit powers is assumed. The impact of various system parameters, such as signal-to interference-plus-noise ratio (SINR) threshold, separation distance between UAVs, and the number of UAVs and their formations are carefully studied to achieve the maximum coverage area inside and to reduce the unnecessary coverage expansion outside the target area. Fundamental analysis is required to obtain the optimal trade-off between the design parameters and performance metrics of any communication systems. This thesis particularly considers two emerging scenarios for evaluating performance of UAV communication systems. In the first scenario, the uplink UAV communication system is considered where the ground user follows the random waypoint (RWP) model for user mobility, the small-scale channel fading follows the Nakagami-m model, and the uplink interference is modeled by Gamma approximation. Specifically, the closed-form expressions for the probability density function (PDF), the cumulative distribution function (CDF), the outage probability, and the average bit error rate (BER) of the considered UAV system are derived as performance metrics. In the second scenario, the downlink hybrid caching system is considered where UAVs and ground small-cell BSs (SBSs) are distributed according to two independent homogeneous Poisson point processes (PPPs), and downlink interference is modeled by the Laplace transforms. Specifically, the analytical expressions of the successful content delivery probability and energy efficiency of the considered network are derived as performance metrics. In both scenarios, results are presented to demonstrate the interplay between the communication performance and the design parameters
    corecore