40,686 research outputs found

    Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography

    Get PDF
    Efficient implementation of the number theoretic transform(NTT), also known as the discrete Fourier transform(DFT) over a finite field, has been studied actively for decades and found many applications in digital signal processing. In 1971 Schonhage and Strassen proposed an NTT based asymptotically fast multiplication method with the asymptotic complexity O(m log m log log m) for multiplication of mm-bit integers or (m-1)st degree polynomials. Schonhage and Strassen\u27s algorithm was known to be the asymptotically fastest multiplication algorithm until Furer improved upon it in 2007. However, unfortunately, both algorithms bear significant overhead due to the conversions between the time and frequency domains which makes them impractical for small operands, e.g. less than 1000 bits in length as used in many applications. With this work we investigate for the first time the practical application of the NTT, which found applications in digital signal processing, to finite field multiplication with an emphasis on elliptic curve cryptography(ECC). We present efficient parameters for practical application of NTT based finite field multiplication to ECC which requires key and operand sizes as short as 160 bits in length. With this work, for the first time, the use of NTT based finite field arithmetic is proposed for ECC and shown to be efficient. We introduce an efficient algorithm, named DFT modular multiplication, for computing Montgomery products of polynomials in the frequency domain which facilitates efficient multiplication in GF(p^m). Our algorithm performs the entire modular multiplication, including modular reduction, in the frequency domain, and thus eliminates costly back and forth conversions between the frequency and time domains. We show that, especially in computationally constrained platforms, multiplication of finite field elements may be achieved more efficiently in the frequency domain than in the time domain for operand sizes relevant to ECC. This work presents the first hardware implementation of a frequency domain multiplier suitable for ECC and the first hardware implementation of ECC in the frequency domain. We introduce a novel area/time efficient ECC processor architecture which performs all finite field arithmetic operations in the frequency domain utilizing DFT modular multiplication over a class of Optimal Extension Fields(OEF). The proposed architecture achieves extension field modular multiplication in the frequency domain with only a linear number of base field GF(p) multiplications in addition to a quadratic number of simpler operations such as addition and bitwise rotation. With its low area and high speed, the proposed architecture is well suited for ECC in small device environments such as smart cards and wireless sensor networks nodes. Finally, we propose an adaptation of the Itoh-Tsujii algorithm to the frequency domain which can achieve efficient inversion in a class of OEFs relevant to ECC. This is the first time a frequency domain finite field inversion algorithm is proposed for ECC and we believe our algorithm will be well suited for efficient constrained hardware implementations of ECC in affine coordinates

    Tomographic laser absorption spectroscopy using Tikhonov regularization

    Full text link
    The application of tunable diode laser absorption spectroscopy (TDLAS) to flames with non-homogeneous temperature and concentration fields is an area where only few studies exist. Experimental work explores the performance of tomographic reconstructions of concentration and temperature profiles from wavelength-modulated TDLAS measurements within the plume of an axisymmetric McKenna burner. Water vapor transitions at 1391.67 nm and 1442.67 nm are probed using calibration free wavelength modulation spectroscopy with second harmonic detection (WMS-2f). A single collimated laser beam is swept parallel to the burner surface, where scans yield pairs of line-of-sight (LOS) data at multiple radial locations. Radial profiles of absorption data are reconstructed using Tikhonov regularized Abel inversion, which suppresses the amplification of experimental noise that is typically observed for reconstructions with high spatial resolution. Based on spectral data, temperatures and concentrations are calculated point-by-point. Here, a least-squares approach addresses difficulties due to modulation depths that cannot be universally optimized due to a non-uniform domain. Experimental results show successful reconstructions of temperature and concentration profiles based on two-transition, non-optimally modulated WMS-2f and Tikhonov regularized Abel inversion, and thus validate the technique as a viable diagnostic tool for flame measurements.Comment: This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.53.008095. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under la

    UBathy: a new approach for bathymetric inversion from video imagery

    Get PDF
    A new approach to infer the bathymetry from coastal video monitoring systems is presented. The methodology uses principal component analysis of the Hilbert transform of video images to obtain the components of the wave propagation field and their corresponding frequency and wavenumber. Incident and reflected constituents and subharmonics components are also found. Local water depth is then successfully estimated through wave dispersion relationship. The method is first applied to monochromatic and polychromatic synthetic wave trains propagated using linear wave theory over an alongshore uniform bathymetry in order to analyze the influence of different parameters on the results. To assess the ability of the approach to infer the bathymetry under more realistic conditions and to explore the influence of other parameters, nonlinear wave propagation is also performed using a fully nonlinear Boussinesq-type model over a complex bathymetry. In the synthetic cases, the relative root mean square error obtained in bathymetry recovery (for water depths 0.75m¿h¿8.0m) ranges from ~1% to ~3% for infinitesimal-amplitude wave cases (monochromatic or polychromatic) to ~15% in the most complex case (nonlinear polychromatic waves). Finally, the new methodology is satisfactorily validated through a real field site video.Postprint (published version
    • …
    corecore