4 research outputs found

    MODEL PREDICTIVE CONTROL OF ENERGY SYSTEMS FOR HEAT AND POWER APPLICATIONS

    Get PDF
    Building and transportation sectors together account for two-thirds of the total energy consumption in the US. There is a need to make these energy systems (i.e., buildings and vehicles) more energy efficient. One way to make grid-connected buildings more energy efficient is to integrate the heating, ventilation and air conditioning (HVAC) system of the building with a micro-scale concentrated solar power (MicroCSP) sys- tem. Additionally, one way to make vehicles driven by internal combustion engine (ICE) more energy efficient is by integrating the ICE with a waste heat recovery (WHR) system. But, both the resulting energy systems need a smart supervisory controller, such as a model predictive controller (MPC), to optimally satisfy the en- ergy demand. Consequently, this dissertation centers on development of models and design of MPCs to optimally control the combined (i) building HVAC system and the MicroCSP system, and (ii) ICE system and the WHR system. In this PhD dissertation, MPCs are designed based on the (i) First Law of Thermo- dynamics (FLT), and (ii) Second Law of Thermodynamics (SLT) for each of the two energy systems. Maximizing the FLT efficiency of an energy system will minimise energy consumption of the system. MPC designed based on FLT efficiency are de- noted as energy based MPC (EMPC). Furthermore, maximizing the SLT efficiency of the energy system will maximise the available energy for a given energy input and a given surroundings. MPC designed based on SLT efficiency are denoted as exergy based MPC (XMPC). Optimal EMPC and XMPC are designed and applied to the combined building HVAC and MicroCSP system. In order to evaluate the designed EMPC and XMPC, a com- mon rule based controller (RBC) was designed and applied to the combined building HVAC and MicroCSP system. The results show that the building energy consump- tion reduces by 38% when EMPC is applied to the combined MicroCSP and building HVAC system instead of using the RBC. XMPC applied to the combined MicroCSP and building HVAC system reduces the building energy consumption by 45%, com- pared to when RBC is applied. Optimal EMPC and XMPC are designed and applied to the combined ICE and WHR system. The results show that the fuel consumption of the ICE reduces by 4% when WHR system is added to the ICE and when RBC is applied to both ICE and WHR systems. EMPC applied to the combined ICE and WHR system reduces the fuel consumption of the ICE by 6.2%, compared to when RBC is applied to ICE without WHR system. XMPC applied to the combined ICE and WHR system reduces the fuel consumption of the ICE by 7.2%, compared to when RBC is applied to ICE without WHR system

    Integration and optimal control of microcsp with building hvac systems: Review and future directions

    Get PDF
    Heating, ventilation, and air-conditioning (HVAC) systems are omnipresent in modern buildings and are responsible for a considerable share of consumed energy and the electricity bill in buildings. On the other hand, solar energy is abundant and could be used to support the building HVAC system through cogeneration of electricity and heat. Micro-scale concentrated solar power (MicroCSP) is a propitious solution for such applications that can be integrated into the building HVAC system to optimally provide both electricity and heat, on-demand via application of optimal control techniques. The use of thermal energy storage (TES) in MicroCSP adds dispatching capabilities to the MicroCSP energy production that will assist in optimal energy management in buildings. This work presents a review of the existing contributions on the combination of MicroCSP and HVAC systems in buildings and how it compares to other thermal-assisted HVAC applications. Different topologies and architectures for the integration of MicroCSP and building HVAC systems are proposed, and the components of standard MicroCSP systems with their control-oriented models are explained. Furthermore, this paper details the different control strategies to optimally manage the energy flow, both electrical and thermal, from the solar field to the building HVAC system to minimize energy consumption and/or operational cost

    Análisis termodinámico y termoeconómico de la instalación central de los edificios sociales de Portugalete. búsqueda de buenas prácticas para futuras réplicas

    Get PDF
    Given the climate and energy crisis currently affecting the planet and the fact that Spain is one of the most affected countries in the European Union, there is a need for research into energy saving in buildings, with a large part of the focus on reducing their consumption. In this case, the project is located in Greater Bilbao, specifically in Portugalete. The fact that social housing is increasingly in demand is a good reason for research to focus on improving the thermal installations inside these buildings. Even more so, if we take into account that since COVID-19 came into society, more time is spent inside homes, with all that this entails; increased energy demand and consumption, emissions, inflated bills, etc. This project seeks solutions to the irreversibilities that are generated in the systems of the selected dwellings, but the aim is to go beyond the usual energy studies, giving greater importance to the exergetic and thermoeconomic study. First, an analysis will be carried out in which different measures will be taken to define the current state of the installation. Then, the necessary data will be selected to identify the dynamic model of the system. Then, the different operating models will be analysed according to the use. Once all the data has been collected and analysed, an exergetic analysis will be carried out, which will reveal which equipment produces the greatest amount of irreversibilities. All of this, with the aim of finding possible new operating strategies to reduce them and which will give rise to new research in new areas such as the control of installations. In addition, the same facility and each control will be simulated in Seville and Logroño in order to analyse how the costs varies from one climate to another.Gaur egun planetak bizi duen krisi klimatiko eta energetikoa dela eta, eta Espainia Europar Batasuneko herrialde kaltetuenetako bat dela kontuan hartuta, energia-aurrezteko ikertu behar da, eta foku gehienak eraikinen kontsumoaren murrizketan jarri dira. Kasu honetan, Bilbo Handian kokatzen dugu proiektua, Portugaleten hain zuzen ere. Babes Ofizialeko Etxebizitzak gero eta gehiago eskatzen dira, eta hori pisuzko arrazoia da ikerketaren oinarria etxebizitza horiek dituzten instalazio termikoak hobetzea izan dadin. Are gehiago, COVID-19a gizartean sartu denetik denbora gehiago ematen dela etxebizitzen barruan kontuan harturik, horrek dakarren guztiarekin; energia-eskaria eta -kontsumoa handitzea, emisioak, fakturak, etab. Proiektu honek hautatutako etxebizitzen sistemetan sortzen diren itzulezintasunei irtenbidea bilatzen die, baina ohiko energia-azterketatik harago iritsi nahi du, azterketa exergetikoari eta termoekonomikoari garrantzi handiagoa emanez. Lehenik eta behin, analisi bat egingo da, eta, bertan, instalazioaren egungo egoera zehazteko hainbat neurri hartuko dira. Ondoren, sistemaren eredu dinamikoa identifikatzeko beharrezko datuak aukeratuko dira. Gero, eredua ezberdinak aztertuko dira, erabileraren arabera. Datu guztiak bildu eta aztertu ondoren, azterketa exergetikoa egingo da, eta horrek erakutsiko ditu itzulezintasun gehiago sortzen dituzten ekipoak. Hori guztia, itzulezintasunak murriztuko dituzten funtzionamendu-estrategia berriak aurkitzeko eta eremu berrietan ikerketa berriak egiteko, hala nola instalazioen kontrolean. Gainera, instalazio bera simulatuko da Sevillako eta Logroñoko kontrolarekin, kostuak klima batetik bestera nola aldatzen diren aztertzeko.Dada la crisis climática y energética que atraviesa actualmente el planeta y que España es uno de los países de la Unión Europea que más afectado se está viendo, nace la necesidad de investigar en el ahorro energético de los edificios poniendo gran parte de los focos sobre la reducción del consumo de estos. En este caso, situamos el proyecto en el Gran Bilbao, concretamente en Portugalete. El hecho de que las Viviendas de Protección Oficial estén cada vez más solicitadas, es una razón de peso para que la investigación se centre en mejorar las instalaciones térmicas que estas albergan en su interior. Más aún, si tenemos en cuenta que desde que la COVID-19 entro en la sociedad se pasa más tiempo dentro de las viviendas, con todo lo que eso conlleva; aumento de la demanda y el consumo energético, emisiones, facturas infladas, etc. Este proyecto busca soluciones a las irreversibilidades que se generan en los sistemas de las viviendas seleccionadas, pero se quiere llegar más allá de los estudios energéticos habituales, dándole mayor importancia al estudio exergético y termoeconómico. Primero, se realizará un análisis donde se tomarán distintas medidas para definir el estado actual de la instalación. Después, se escogerán los datos necesarios para identificar el modelo dinámico del sistema. Luego, se analizarán los distintos modelos de operación según el uso. Una vez recogidos y analizados todos los datos se procederá al análisis exergético que revelará que equipos producen mayor cantidad de irreversibilidades. Todo ello, con el fin de encontrar posibles nuevas estrategias de funcionamiento que las reduzca y que de pie a nuevas investigaciones en nuevos ámbitos como el control de las instalaciones. Además, se simulará la misma instalación con su respectivo control en Sevilla y en Logroño para analizar cómo varían los costes de un clima a otro

    Optimal exergy-wise predictive control for a combined MicroCSP and HVAC system in a building

    No full text
    This paper presents a new control method to minimize the energy consumption of a micro-scale concentrated solar power (MicroCSP) system and building heating, ventilation, and air conditioning (HVAC) system. A new realtime optimal control method is proposed using the concept of “exergy” and model predictive control (MPC) techniques. To achieve this, first law of thermodynamics (FLT) and second law of thermodynamics (SLT) based mathematical models of MicroCSP are developed and integrated into a model of an office building located at Michigan Technological University. Then, an exergy-wise MPC framework is designed to optimize MicroCSP operation in accordance with the building HVAC needs. The new controller reduces exergy destruction by 28%, compared to a common rule-based controller (RBC). This leads to 23% energy saving, compared to the applied RBC
    corecore