2,370 research outputs found

    USRA/RIACS

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing; Advanced Methods for Scientific Computing; Learning Systems; High Performance Networks and Technology; Graphics, Visualization, and Virtual Environments

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    A new parallelisation technique for heterogeneous CPUs

    Get PDF
    Parallelization has moved in recent years into the mainstream compilers, and the demand for parallelizing tools that can do a better job of automatic parallelization is higher than ever. During the last decade considerable attention has been focused on developing programming tools that support both explicit and implicit parallelism to keep up with the power of the new multiple core technology. Yet the success to develop automatic parallelising compilers has been limited mainly due to the complexity of the analytic process required to exploit available parallelism and manage other parallelisation measures such as data partitioning, alignment and synchronization. This dissertation investigates developing a programming tool that automatically parallelises large data structures on a heterogeneous architecture and whether a high-level programming language compiler can use this tool to exploit implicit parallelism and make use of the performance potential of the modern multicore technology. The work involved the development of a fully automatic parallelisation tool, called VSM, that completely hides the underlying details of general purpose heterogeneous architectures. The VSM implementation provides direct and simple access for users to parallelise array operations on the Cell’s accelerators without the need for any annotations or process directives. This work also involved the extension of the Glasgow Vector Pascal compiler to work with the VSM implementation as a one compiler system. The developed compiler system, which is called VP-Cell, takes a single source code and parallelises array expressions automatically. Several experiments were conducted using Vector Pascal benchmarks to show the validity of the VSM approach. The VP-Cell system achieved significant runtime performance on one accelerator as compared to the master processor’s performance and near-linear speedups over code runs on the Cell’s accelerators. Though VSM was mainly designed for developing parallelising compilers it also showed a considerable performance by running C code over the Cell’s accelerators
    • …
    corecore