1,695 research outputs found

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    Sensing-Throughput Tradeoff for Superior Selective Reporting-based Spectrum Sensing in Energy Harvesting HCRNs

    Full text link
    In this paper, we investigate the performance of conventional cooperative sensing (CCS) and superior selective reporting (SSR)-based cooperative sensing in an energy harvesting-enabled heterogeneous cognitive radio network (HCRN). In particular, we derive expressions for the achievable throughput of both schemes and formulate nonlinear integer programming problems, in order to find the throughput-optimal set of spectrum sensors scheduled to sense a particular channel, given primary user (PU) interference and energy harvesting constraints. Furthermore, we present novel solutions for the underlying optimization problems based on the cross-entropy (CE) method, and compare the performance with exhaustive search and greedy algorithms. Finally, we discuss the tradeoff between the average achievable throughput of the SSR and CCS schemes, and highlight the regime where the SSR scheme outperforms the CCS scheme. Notably, we show that there is an inherent tradeoff between the channel available time and the detection accuracy. Our numerical results show that, as the number of spectrum sensors increases, the channel available time gains a higher priority in an HCRN, as opposed to detection accuracy

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    End-to-end Throughput Maximization for Underlay Multi-hop Cognitive Radio Networks with RF Energy Harvesting

    Full text link
    This paper studies a green paradigm for the underlay coexistence of primary users (PUs) and secondary users (SUs) in energy harvesting cognitive radio networks (EH-CRNs), wherein battery-free SUs capture both the spectrum and the energy of PUs to enhance spectrum efficiency and green energy utilization. To lower the transmit powers of SUs, we employ multi-hop transmission with time division multiple access, by which SUs first harvest energy from the RF signals of PUs and then transmit data in the allocated time concurrently with PUs, all in the licensed spectrum. In this way, the available transmit energy of each SU mainly depends on the harvested energy before the turn to transmit, namely energy causality. Meanwhile, the transmit powers of SUs must be strictly controlled to protect PUs from harmful interference. Thus, subject to the energy causality constraint and the interference power constraint, we study the end-to-end throughput maximization problem for optimal time and power allocation. To solve this nonconvex problem, we first equivalently transform it into a convex optimization problem and then propose the joint optimal time and power allocation (JOTPA) algorithm that iteratively solves a series of feasibility problems until convergence. Extensive simulations evaluate the performance of EH-CRNs with JOTPA in three typical deployment scenarios and validate the superiority of JOTPA by making comparisons with two other resource allocation algorithms

    FreeNet: Spectrum and Energy Harvesting Wireless Networks

    Full text link
    The dramatic mobile data traffic growth is not only resulting in the spectrum crunch but is also leading to exorbitant energy consumption. It is thus desirable to liberate mobile and wireless networks from the constraint of the spectrum scarcity and to rein in the growing energy consumption. This article introduces FreeNet, figuratively synonymous to "Free Network", which engineers the spectrum and energy harvesting techniques to alleviate the spectrum and energy constraints by sensing and harvesting spare spectrum for data communications and utilizing renewable energy as power supplies, respectively. Hence, FreeNet increases the spectrum and energy efficiency of wireless networks and enhances the network availability. As a result, FreeNet can be deployed to alleviate network congestion in urban areas, provision broadband services in rural areas, and upgrade emergency communication capacity. This article provides a brief analysis of the design of FreeNet that accommodates the dynamics of the spare spectrum and employs renewable energy

    Multi-Objective Resource Allocation for Secure Communication in Cognitive Radio Networks with Wireless Information and Power Transfer

    Full text link
    In this paper, we study resource allocation for multiuser multiple-input single-output secondary communication systems with multiple system design objectives. We consider cognitive radio networks where the secondary receivers are able to harvest energy from the radio frequency when they are idle. The secondary system provides simultaneous wireless power and secure information transfer to the secondary receivers. We propose a multi-objective optimization framework for the design of a Pareto optimal resource allocation algorithm based on the weighted Tchebycheff approach. In particular, the algorithm design incorporates three important system objectives: total transmit power minimization, energy harvesting efficiency maximization, and interference power leakage-to-transmit power ratio minimization. The proposed framework takes into account a quality of service requirement regarding communication secrecy in the secondary system and the imperfection of the channel state information of potential eavesdroppers (idle secondary receivers and primary receivers) at the secondary transmitter. The adopted multi-objective optimization problem is non-convex and is recast as a convex optimization problem via semidefinite programming (SDP) relaxation. It is shown that the global optimal solution of the original problem can be constructed by exploiting both the primal and the dual optimal solutions of the SDP relaxed problem. Besides, two suboptimal resource allocation schemes for the case when the solution of the dual problem is unavailable for constructing the optimal solution are proposed. Numerical results not only demonstrate the close-to-optimal performance of the proposed suboptimal schemes, but also unveil an interesting trade-off between the considered conflicting system design objectives.Comment: Accepted with minor revisions for publication as a regular paper in the IEEE Transactions on Vehicular Technolog

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Stackelberg Game for Distributed Time Scheduling in RF-Powered Backscatter Cognitive Radio Networks

    Full text link
    In this paper, we study the transmission strategy adaptation problem in an RF-powered cognitive radio network, in which hybrid secondary users are able to switch between the harvest-then-transmit mode and the ambient backscatter mode for their communication with the secondary gateway. In the network, a monetary incentive is introduced for managing the interference caused by the secondary transmission with imperfect channel sensing. The sensing-pricing-transmitting process of the secondary gateway and the transmitters is modeled as a single-leader-multi-follower Stackelberg game. Furthermore, the follower sub-game among the secondary transmitters is modeled as a generalized Nash equilibrium problem with shared constraints. Based on our theoretical discoveries regarding the properties of equilibria in the follower sub-game and the Stackelberg game, we propose a distributed, iterative strategy searching scheme that guarantees the convergence to the Stackelberg equilibrium. The numerical simulations show that the proposed hybrid transmission scheme always outperforms the schemes with fixed transmission modes. Furthermore, the simulations reveal that the adopted hybrid scheme is able to achieve a higher throughput than the sum of the throughput obtained from the schemes with fixed transmission modes

    Energy Efficient Resource Allocation in EH-enabled CR Networks for IoT

    Full text link
    With the rapid growth of Internet of Things (IoT) devices, the next generation mobile networks demand for more operating frequency bands. By leveraging the underutilized radio spectrum, the cognitive radio (CR) technology is considered as a promising solution for spectrum scarcity problem of IoT applications. In parallel with the development of CR techniques, Wireless Energy Harvesting (WEH) is considered as one of the emerging technologies to eliminate the need of recharging or replacing the batteries for IoT and CR networks. To this end, we propose to utilize WEH for CR networks in which the CR devices are not only capable of sensing the available radio frequencies in a collaborative manner but also harvesting the wireless energy transferred by an Access Point (AP). More importantly, we design an optimization framework that captures a fundamental tradeoff between energy efficiency (EE) and spectral efficiency (SE) of the network. In particular, we formulate a Mixed Integer Nonlinear Programming (MINLP) problem that maximizes EE while taking into consideration of users' buffer occupancy, data rate fairness, energy causality constraints and interference constraints. We further prove that the proposed optimization framework is an NP-Hard problem. Thus, we propose a low complex heuristic algorithm, called INSTANT, to solve the resource allocation and energy harvesting optimization problem. The proposed algorithm is shown to be capable of achieving near optimal solution with high accuracy while having polynomial complexity. The efficiency of our proposal is validated through well designed simulations
    • …
    corecore