909 research outputs found

    Near-Optimal Energy-Efficient Joint Resource Allocation for Multi-Hop MIMO-AF Systems

    Get PDF
    Energy efficiency (EE) is becoming an important performance indicator for ensuring both the economical and environmental sustainability of the next generation of communication networks. Equally, cooperative communication is an effective way of improving communication system performances. In this paper, we propose a near-optimal energy-efficient joint resource allocation algorithm for multi-hop multiple-input-multiple-output (MIMO) amplify-and-forward (AF) systems. We first show how to simplify the multivariate unconstrained EE-based problem, based on the fact that this problem has a unique optimal solution, and then solve it by means of a low-complexity algorithm. We compare our approach with classic optimization tools in terms of energy efficiency as well as complexity, and results indicate the near-optimality and low-complexity of our approach. As an application, we use our approach to compare the EE of multi-hop MIMO-AF with MIMO systems and our results show that the former outperforms the latter mainly when the direct link quality is poor

    Optimal Energy-Efficient Joint Resource Allocation for Multi-Hop MIMO-AF Systems

    Full text link

    Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission

    Full text link
    In this paper, we study the physical layer security (PLS) problem in the dual hop orthogonal frequency division multiplexing (OFDM) based wireless communication system. First, we consider a single user single relay system and study a joint power optimization problem at the source and relay subject to individual power constraint at the two nodes. The aim is to maximize the end to end secrecy rate with optimal power allocation over different sub-carriers. Later, we consider a more general multi-user multi-relay scenario. Under high SNR approximation for end to end secrecy rate, an optimization problem is formulated to jointly optimize power allocation at the BS, the relay selection, sub-carrier assignment to users and the power loading at each of the relaying node. The target is to maximize the overall security of the system subject to independent power budget limits at each transmitting node and the OFDMA based exclusive sub-carrier allocation constraints. A joint optimization solution is obtained through duality theory. Dual decomposition allows to exploit convex optimization techniques to find the power loading at the source and relay nodes. Further, an optimization for power loading at relaying nodes along with relay selection and sub carrier assignment for the fixed power allocation at the BS is also studied. Lastly, a sub-optimal scheme that explores joint power allocation at all transmitting nodes for the fixed subcarrier allocation and relay assignment is investigated. Finally, simulation results are presented to validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin
    corecore